Calculus III: Final Review

Audriana Houtz

December 1, 2023

1. Suppose \boldsymbol{u} and \boldsymbol{v} are vectors such that $\boldsymbol{u} \cdot \boldsymbol{v}=-9$ and that $\|\boldsymbol{u} \times \boldsymbol{v}\|=9 \sqrt{3}$. Find the angle between \boldsymbol{u} and \boldsymbol{v}.

Solution:

2. Are the lines $\boldsymbol{r}_{1}=\langle 1+t, 2+3 t, 3-2 t\rangle$ and \boldsymbol{r}_{2} with $x=1+t, y=2-2 t$, and $z=$ $3+t$ parallel, intersecting, or skew?

Solution:

3. Give the equation of the plane through the three points $(0,1,2),(-1,1,3)$, and (1, 2, 2).

Solution:

4. Are the following two parameterizations equivalent?

$$
\frac{x}{1}=\frac{y-1}{1}=\frac{z+1}{2} \quad \text { and } \quad \boldsymbol{r}(t)=\langle t, 1+t, 1+2 t\rangle
$$

Solution:

5. Find $\boldsymbol{r}(t)$ that satisfies $\boldsymbol{r}(0)=\langle 2,3,1\rangle$ and $\boldsymbol{r}^{\prime}(t)=\langle\sin (2 t), \cos (2 t), 3 t\rangle$.

Solution:

6. Find the normal plane of the curve $\boldsymbol{r}(t)=\langle t, 3 \sin (t), 3 \cos (t)\rangle$ at the point $(0,0,3)$.

Solution:

7. Let $f(x, y, z)=x^{3} y^{2} z+x^{2} y^{3} z^{2}+x y^{2} z^{3}$. Find the partial derivative $f_{z x x y}$.

Solution:

8. Find the directional derivative of $f(x, y)=x^{2} y$ at the point $(1,2)$ in the direction $\langle 4,3\rangle$.

Solution:

9. Let $f(x, y)=x^{2}+x y+y^{2}-4 y$. Is the point $P=\left(-\frac{4}{3}, \frac{8}{3}\right)$ a local minimum, local maximum, saddle point, or none of these?

Solution:

10. What is the maximum value of $f(x, y)=5 x-3 y$ subject to the constraint $x^{2}+y^{2}=136 ?$

Solution:

11. Find an expression for the area bounded by $y=2 x$ and $y=x^{2}$.

Solution:

12. Compute $\iint_{D} \frac{1}{\sqrt{x^{2}+y^{2}}} d A$ where D is the disk of radius 3 centered at the origin.

Solution:

13. Rewrite the iterated integral $\int_{0}^{3} \int_{0}^{2-\frac{2 z}{3}} \int_{0}^{6-2 z-3 y} x d x d y d z$ as an iterated integral $d y d x d z$.

Solution:

14. Set-up but do not solve the integral that computes the volume of the region below the cone $z=2-\sqrt{x^{2}+y^{2}}$ and above the plane $z=0$.

Solution:

15. Find the area of the ellipse $x^{2}+4 y^{2} \leq 16$ using the change of coordinates $x=$ $2 u \cos (v)$ and $y=u \sin (v)$.

Solution:

16. Set-up an integral for the arc-length of the piece of the ellipse $x^{2}+4 y^{2}=16$ from $(0,2)$ to $(4,0)$.

Solution:

17. Find the work done by the force field $\boldsymbol{F}=\left\langle 2 y^{3}-6 x z, 6 x y^{2}-4 y, 4-3 x^{2}\right\rangle$ if a particle of mass 1 kg moves along a curve from the point $(1,0,-1)$ to the point $2,2,-3)$.

Solution:

18. Compute the curl of $\boldsymbol{F}=\left\langle\sin (x)+y z, y e^{z}, e^{x y}\right\rangle$.

Solution:

19. Let C be the smooth simple positively-oriented curve bounding the rectangle with vertices $(0,0),(0,1),(2,0)$, and $(2,1)$. Compute $\int_{C} \boldsymbol{F} \cdot d \boldsymbol{r}$ where $\boldsymbol{F}=$ $\left\langle e^{y}, x e^{y}+4 x\right\rangle$

Solution:

20. Set-up but do not solve the flux integral $\iint_{S} \boldsymbol{F} \cdot d \boldsymbol{S}$ where $\boldsymbol{F}=\langle y, 2 x, z\rangle$ and S is the surface $z=5 x^{2}+2 y^{2}-10$ for $-1 \leq x \leq 1$ and $-1 \leq y \leq 1$ with upwards orientation and parameterization $x=u$ and $y=v$.

Solution:

21. Let C be the curve $\boldsymbol{r}(t)=\langle\cos (t), \sin (t), 0\rangle$. Does the hemisphere $z=-\sqrt{1-x^{2}-y^{2}}$ oriented downward have the wrong orientation if used in Stokes' theorem to compute a work integral around C in the direction of increasing t ?

Solution:

22. Take the surface S bounded by the cylinder $x^{2}+y^{2}=1, z=0$, and $z=4$ with an outward orientation. Evaluate $\iint_{S}\left\langle x^{2}, y^{2}, x y\right\rangle \cdot d \boldsymbol{S}$.

Solution:

