Standard 03: Planes

Planes in 3D

Equation of a Plane in 3-D

A plane in 3D requires two things:

- a point in the plane $\vec{r}_{0}=\left(x_{0}, y_{0}, z_{0}\right)$
- the direction orthogonal to the plane $\vec{n}=\langle a, b, c\rangle$
vector equation $=\vec{n} \cdot\left(\vec{r}-\vec{r}_{0}\right)=0$.
standard equation $=a x+b y+c z=d=\vec{n} \cdot \vec{r}_{0}$
example Find the equation of the plane that contains the point $(7,2,-1)$ and is orthogonal to the line given by the parametrization $\vec{r}(t)=\langle 1-2 t, 3 t, 2-t\rangle$.

We are given the point $(7,2,-1)$ and a vector that is orthogonal.
Since $\vec{F}(t)$ is orthogonal, its direction vector is or thogonal to the plane. So we have our two parts.

$$
\begin{aligned}
& \vec{r}_{0}=(7,2,-1)\{\vec{n}=\langle-2,3,-1\rangle \\
& -2 x+3 y-1 z=\langle-2,3,-1\rangle-\langle 7,2,-1\rangle \\
& -2 x+3 y-z=-14+6+1=-7 \\
& -2 x+3 y-z=-7
\end{aligned}
$$

example. Find an equation for P_{1} the plane that goes through the points $(0,1,2),(-1,1,3)$, and $(1,2,2)$.

To find the equation of a plane we need a point on the plane and normal vector \vec{n}.
We are given three points to choose from and can find a normal vector by finding a cross product between two vectors in the plane, the vector between given points work: $(0,1,2)$ to $(-1,1,2)$ is $\langle-1,0,1\rangle$ and $(0,1,2)$ to $(1,2,2)$ is $\langle 1,1,0\rangle$.

$$
\left.\begin{aligned}
\vec{n}=\langle-1,0,1\rangle \times\langle 1,1,0\rangle=\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
-1 & 0 & 1 \\
& 1 & 1
\end{array}\right| & 0
\end{aligned} \right\rvert\,=\begin{array}{ll}
& (0-1) \vec{\imath}-(0-1) \vec{\jmath}+(-1-0) \vec{k} \\
& =-1 \vec{\imath}+1 \vec{\jmath}-1 \vec{k} \\
& =\langle-1,1,-1\rangle
\end{array}
$$

standard equation: $a x+b y+c z=\vec{n} \cdot \overrightarrow{r_{0}}$.

$$
\begin{aligned}
& -1 x+1 y-1 z=\langle-1,1,-1\rangle \cdot\langle 0,1,2\rangle \\
& -x+y-z=0+1-2 \\
& -x+y-z=-1
\end{aligned}
$$

example. Let P_{1} be the plane found in the above example and P_{2} be the plane described by $x-y+2 z=1$. Do these planes intersect? If so, find the line of intersection and the cosine of the angle between the planes?

If the normal vectors of $P_{1} \& P_{2}$ are scalars of each other then they do not intersect, otherwise we can find L. Since L is contained in P_{1} and P_{2}, L must be orthogonal to the normal vectors for each plane, \vec{n}, and \vec{n}_{2}. Thus the direction of L is $\vec{n}_{1} \times \vec{n}_{2}$. To find the initial point of the line, we must find a $x_{2}, y_{2} z$ s.t. P_{1} and P_{2} are satisfied.

$$
\begin{aligned}
& \vec{n}_{1}=\langle-1,1,-1\rangle\left\{\vec{n}_{2}=\langle 1,-1,2\rangle\right. \\
& \vec{n}_{1} \times \vec{n}_{2}=\vec{\imath} \quad \vec{\jmath} \\
& \begin{array}{llll}
-1 & 1 & -1
\end{array} \\
& \begin{array}{lll}
1 & -1 & 2
\end{array} \\
& =(2-1) \vec{k}-(-2-(-1)) \vec{j}+(1-1) \vec{k} \\
& =1 \vec{k}-(-1) \vec{\jmath}+0 \vec{k} \\
& =\langle 1,1,0\rangle
\end{aligned}
$$

Finding initial point:
using the point $(1,0,0)$

$$
\begin{gathered}
-x+y-z=-1 \\
x-y+2 z=1 \\
0 x+0 y+1 z=0 \\
z=0
\end{gathered}
$$

if $z=0$ then $x-y=1$
choose $v=0$, then $x=1$

The angle between 2 planes is found through finding the angle between their norms, this is equivalent due to
complementary angles.
$\|\vec{n}\|,\|\vec{n},\| \cos \theta=\vec{n}, \stackrel{\rightharpoonup}{n_{2}}$
$\sqrt{(-1)^{2}+(4)^{2}+(-1)^{2}} \sqrt{(1)^{2}+(-1)^{2}+(2)^{2}} \cos \theta=(-2)(1)+(1)(-1)+(-1)(2)$
$\sqrt{3} \sqrt{6} \cos \theta=-1-1-2$
$\cos \theta=-4 / 3 \sqrt{2}=-2 \sqrt{2} / 3$

Distance

Distance from a point P_{1} to the plane.

Pick a point P_{0} in the plane, name the distance between P_{1} and P_{0}, \vec{b}. This may not be the shortest distance from the point to the plane, the shortest distance is on the normal vector of the plane, so we take $D=\mid$ com $p_{\star} \vec{b} \mid$.
example. Find the distance from the point $(2,1,2)$ to the plane $x+y+z=1$.
To find a point on the plane set two variables to zero: $(0)+(0)+z=1 \Rightarrow P_{0}=(0,0,1)$
The vector between $\left(x_{1}, y_{1}, z_{1}\right)\left\{\left(x_{2}, y_{2}, z_{2}\right)\right.$ is $\left.\left\langle x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right\rangle:<2-0,1-0,2-1\right\rangle=\langle 2,1,1 p$
The normal vector of $a x+b y+c z=d$ is $\langle a, b, c\rangle: \vec{n}=\langle 1,1, \mid\rangle$

Note that if two planes intersect then the distance between them is zero, so a question about distance only makes sense for parallel planes.

