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Common Quadric Surfaces

The previous two standards focused on lines and planes , today we want to consider surfaces that commonly

appear. In particular we will focus on quadric surfaces ,
i

.
e

. graphs of any equation that can be put into the

general form Ax+By+Cz + Dxy + Exz + fyz + Gx + Hy+ Iz + 5 = 0 where A
, ...,

5 are constants .

ellipsoid
The general equation of an ellipsoid is a

++ = 1
.

Notice that the equation above gives an ellipsoid centered at the origin .

This may not always be the case but it is easier for note taking purposes .

Also
,

make note that if a = b = c then we have a sphere .

cone

x
+ y = 2

.The general equation of a cone is an

While this does not look like what we expect a cone to be
, we can restrict to zz0 or

= = 0 to see the classic cone shape. Alternatively , you can solve the equation for z :

(2(a + y) = z2

ch

a x2 + biy2 = z2 square roots alway return positive numbers so :

=a2x2 + y yz =

z z = Ax +Byz =

upper cone z = Ax2+By'= lower cone

furthermore
,

this cone centers on the z-axis .
The variable that sits alone on one side the equal sign will determine the axis

the cone " centers" around . For example ,
to have the cone centered on the x-axis we use the equation bet =

a
Y.

cylinder

The general equation of a cylinder is + ** = 1
.

Much like the cone,
the cylinder is centered on one axis . The axis correlates to the missing variable. The

cross section of this cylinder is a ellipse unless a = b
,

in which case it will be a circle .

We mostly deal with circular cylinders and instead use a simplified equation. x y = r2 where r

is the radius of the circle cross section .

hyperboloid of one sheet

The general equation of a hyperboloid of one sheet is + - E = 1
.

The variable following the negative sign is the axis the hyperboloid centers around.



hyperboloid of two sheets

The general equation of a hyperboloid of two sheets is - - += 1
.

The variable with the positive sign in front of it will give the axis it is centered on .

Notice that the only difference between the one fold and two fold equations is the

signs , they are exactly the opposite .

elliptic paraboloid
The general equation of an elliptic paraboloid is a B =

.

The equation above has elliptic cross section and if a = b it will have a circle cross section
.

The variable that isn't squared is the axis that the paraboloid centers around. The sign of

the constant c tells us if the paraboloid opens up (positives and down (negativel .

hyperbolic paraboloid
Y

= E
.The general equation of a hyperbolic paraboloid is a -bu

This should look similar to a saddle . The graph uses a positive c
,

a negative c would reverse

the direction the graph "opens up .

"

Adding or subtracting a constant on the left side will

shift the surface up or down .

Domain of Multivariable Functions

Recall from high school algebra that the domain of a function of a single variable
, y

= f(x)
,
consisted of all the values of x that we can

plug into the function to receive a real number. In this case the domain of the function is an interval (or intervals) of values

from the number line .
The domain of a function of two variables

,
z = f(x

,y) , are regions from two dimensional space and consist of all

the coordinate pairs, (x
,y ,

that we can plug into the function to receive a real number.

example. Determine the domain of each of the following :

(a) f(x
, y) =

x + y + (b) f(x
,y) = x +y (C) f(x

,y) = x' + y (d) f(x
,y) = (n) x

2
+y2 -3)

E(x
,x) / XeR

, yE 13 You can not take You can not take You can not take the log

there are no the square root of the square root of of a negative or of zero

restrictions a negative number a negative number \(X
,y)) x + y2 -303

E(x
,y)) x + y = 03 [Ix

,y)) x = 0
, y

= 03

↓ !



Similarly ,
a function of three variables

,
w=f(x

,y ,
z) ,

will have a region in three dimensional space as a domain .

1

example. Determine the domain of f(x
, y ,

z) =

x +y+ z2 -9
.

We can not take a square root of a negative number and we can not divide by zero :

x +y + z2 - 9>0

x +y + z 9 which are the points outside of the sphere of radius 3 centered at the origin .

Parameterization

We have already seen our first example of vector-valued functions when we handled equations of lines. The equation of a line
,

in

vector and parametric form ,
took in a value t and spit out a position vector . We aim to do that here with more than just lines .

vector-valued functions

A vector-valued function takes in one or more variables and returns a vector. We will mostly see single variable vector-valued functions
,

but there are cases we will deal with more . A vector-valued function of a single variable in IR2 and Is have the form
,

(t)=<f(t)
,g(t)

and (t) = < f (t)
, g(t) , hIt)

, respectively ,
where fit)

, g(t) ,
hit) are called component functions.

Our goal in this section is to identify vector-valued functions
, graph them

,
and identify the graph given the vector-valued function .

We start by identifying their domains
,
i . e . the set of all t's that give a real value when plugged into all component functions .

example . Determine the domain of the vector-valued function [(t)= <cos(t)
,

In 14-t)
,

Vt+1' >

We first solve for the domain of each component function and then solve for the t that satisfy all domains.

domain of cos(t) : all real numbers

domain of (n14-t) : + < 4 3 - 1 <t 4

domain of # : t = -1

Let us start with graphs of 2-dimensional vector valued functions . To sketch the graph all we need to do is plug in some values of

t that fit the domain and plot points that correspond to the resulting position vector.

example . Sketch the graph of each of the following vector functions
. - D

(a) F(t) = <
,
3 t= -2 t= -1 t = 0

-

t =1 t= 2 (b) F(t)= <t
,
t- 2t + k

& + = 2

⑧ & 3
⑧ 18 - 4

t=

- 2 :F(-2) = c-8
,
3

-2
t = -2 : F(-2) = < -2

,
-3

t=

2

⑧
-

t = - 1 : F(- 1) = x-1
,
37

-1
t= - 1:(- 1) = < -1

,
0) t=- 1 W

18 is ↳ er ⑧ ↓ ↳ b dt = 1

t = 0 : (0) = 20
,
3 t = 0 : F(0) = >0

,
17

--2
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&
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,
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,
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,
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,
57 -4
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,
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parametric equations
Notice that our third example graphed an ellipse .

If we break the vector-valued function into the component functions ,
X=bcos It)

and y= 3sinit)
,

then we can more clearly see why an ellipse appears.
This may have even been covered in calculus # when

going over parametric equations ,
it is one set of parametric equations that gives an ellipse . Any vector-valued function can be broken

down into the parametric equations x = f(t)
, y

= g(t) , z = h(t) .

intersection of surfaces

Given two surfaces
,
it is common to ask for their intersection if one exists . We have already seen an example of this in

standard 03: planes when asked to find the line of intersection between two planes . In this section we have seen examples

of surfaces that have a non-zero curvature . Imagine what happens to two intersecting planes if you "bend" them to

be a paraboloid and a cylinder . Naturally ,
as you "bend" the surface ,

the intersection become "bent". We call these "bent"

lines curves and often parameterize them for ease of reading .

example. Find the curve of intersection for the two surfaces z= x 2 and xity = 4 .

The curve of intersection is the curve
, xct), yIt) , z(t)

,
that satisfies both equations .

Note that the first equation ,
z= x

, gives us a parameterization of z using x's parameterization .

It is left to find a parameterization for x and y . The function xity=4 outlines a circle of

radius 2 ,
therefore we can use the parameterization xIt)= asinct) and yIt) = acos) where a

come from the base equation (asinlt)"+ (acos(t = a? Thus x (t) = 2 sin(t)
, yIt)

= 2 cos(t)
,
and

z(t) = x
2

(2sin(t)2.

sometimes we aren't so lucky to recieve one variable equal to an expression of another or an equation we know the

parameterization for already . Sometimes we have to make our own luck by solving an equation for one variable and

choosing the "innermost" variable to be our parameter t .

example . Find the curves of intersection for the two surfaces x+y+ z = 1 and z = eY

Pick yIt) = t as it is the "innermost" variable : y(t)=t .

Then we can solve for z : z(t)= e
**

= et
.

Solve x+y+ z = 1 for the final variable x
:

x = 1 -

y - E
.

Plug in known variables :

x(t) = 1 -y(t) -z(t) = 1- t - et

<1-t-et
,
t

,
et


