Standard07: Partial Derivatives
partial derivatives
Recall that given a function of one variable, $f(x)$, the derivative, $f^{\prime}(x)$, represents the rate of change of the function as x changes. The issue, we have more than one variable to vary. If we allow more than one to vary then we have an infinite number of ways we can change them: same speed, one faster than the other, different degrees of faster, etc. In this section we concentrate on changing only one variable at a time as the remaining variable (s) are held fixed.

In practice, the partial derivative of $f=f(x, y)$ with respect to x is the derivative of f with respect to x while treating all other variables) as a constant. We denote the partial with respect to x as f_{x}. We can also define a partial with respect to y similarly: take the derivative of f with respect to y while treating all other variables as constants. This definition can be extended to a function with more than two variables. You can also take higher partial derivatives; $\left(f_{x}\right)_{x},\left(f_{x}\right)_{y},\left(f_{y}\right)_{y},\left(f_{y}\right)_{x}$. Alternative notation: $f_{x}(x, y)=f_{x}=\frac{\partial f}{\partial x}=\frac{\partial}{\partial x}(f(x, y))=z_{x}=\frac{\partial z}{\partial x}=D_{x} f$.
example. Compute the second partial derivatives of the following functions:
(i) $f(x, y)=x^{2}+y^{2}+x y$
(ii) $h(s, t)=t^{7} \ln \left(s^{2}\right)+\frac{9}{t^{3}}-\sqrt[7]{s^{4}}$
(iii) $g(x, y, z)=\frac{x \sin (y)}{z^{2}}$
$f_{x}=2 x+0+7$
$f_{y}=0+2 y+x$
$\left(f_{x}\right)_{x}=2+0$
$\left(f_{x}\right)_{y}=0+1$
$\left(f_{y}\right)_{x}=0+1$
$\left(f_{y}\right)_{y}=2+0$

$$
\begin{aligned}
& \left.f_{t}=7 t^{6} \ln s^{2}\right)-\frac{27}{t^{4}}+0 \\
& f_{s}=t^{7} \frac{2}{s}+0-\frac{4}{7} s^{-3 / 7} \\
& \left(f_{t}\right)_{t}=42 t^{5} \ln \left(s^{2}\right)+\frac{108}{t^{5}} \\
& \left(f_{t} s_{s}=7 t^{6} \frac{2}{s}-0\right. \\
& \left(f_{s}\right)_{t}=7 t^{6} \cdot \frac{2}{5}+0 \\
& \left(f_{s}\right)_{s}=-t^{7} \cdot \frac{2}{s^{-2}}+\frac{12}{14} s^{-1 / 7}
\end{aligned}
$$

Clairaut's Theorem. Suppose that f is defined on a disk D that contains the point (a, b). If the functions $f_{x y}$ and $f_{y z}$ are continuous on this disk then $f_{x y}(a, b)=f_{y x}(a, b)$.

gradient

There is a special vector called the gradient vector of $f=f(x, y)$ defined by $\nabla f=\left\langle f_{x}, f y\right.$. This can be extended.

example. Find the gradient of the following vectors:

(i) $f(x, y)=x^{2}+y^{2}+x y$
(ii) $h(s, t)=t^{7} \ln \left(s^{2}\right)+\frac{9}{t^{3}}-\sqrt[2]{s^{4}}$
(iii) $g(x, y, z)=\frac{x \sin (y)}{z^{2}}$
$-2 x \sin (y)$

chain rule

The name chain rule should immediately bring to mind the chain rule for derivative of single variable functions: if $F(x)=f(g(x))$ then $F^{\prime}(x)=f^{\prime}(g(x)) \cdot g(x)$. Alternative notation for this same phenomenon is: if $y=f(x)$ and $x=g(t)$ then $\frac{d y}{d t}=\frac{d y}{d x} \cdot \frac{d x}{d t}$. We want to extend this concept to multi-variable.

Given a function of two variables $f(x, y)$ and two input functions $x(s, t)$ and $y(s, t)$, we can set up the following tree:

We can now use this diagram to compute the partial derivatives $\frac{\partial f}{\partial s}$ and $\frac{\partial f}{\partial t}$: To find $\frac{\partial f}{\partial s}$ we move from the f at the top of the tree down to the two s's. Each time we go down a line we take the derivative of the top over the bottom. If we continue down the tree we multiple the partial derivatives.
If we need to reset to the f to head down a new path then we put a plus between the terms.

Following these rules we have $\frac{\partial f}{\partial s}=\frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial s}$ and $\frac{\partial f}{\partial t}=\frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial t}+\frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial t}$. This can be extended to $f(x, y, z)$.
example. Suppose that $z=f(x, y)$ is a function of x and y and we have input functions $x=s^{2}-t^{2}$ and $y=2 s t$. If $\frac{\partial z}{\partial s}=10$ and $\frac{\partial z}{\partial t}=0$ when $(s, t)=(1,2)$, find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.

$$
\begin{aligned}
& 10=\frac{\partial z}{\partial s}=\frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial s}+\frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial s} \\
& 0=\frac{\partial z}{\partial t}=\frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial t}+\frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial t} \\
& =\frac{\partial z}{\partial x} \cdot(2 s)+\frac{\partial z}{\partial x} \cdot(2 t) \\
& =\frac{2 z}{\partial z} \cdot(-2 t)+\frac{\partial z}{\partial y} \cdot(\text { bc }) \\
& s^{\prime} \mid t s^{\prime} t \quad \text { at }\left|(1,2)=\frac{\partial z}{\partial x}\right| \cdot(2)+\frac{\partial z}{\partial v} \cdot(4) \\
& \text { at }(1,2)=\frac{\partial z}{\partial x} \cdot(-4)+\frac{\partial x}{\partial y}=(2)
\end{aligned}
$$

Solve the linear equations $10=2 \frac{\partial z}{\partial x}+4 \frac{\partial z}{\partial y}$ and $0=-4 \frac{\partial z}{\partial x}+2 \frac{\partial z}{\partial y} \Rightarrow \frac{\partial z}{\partial x}=1$ and $\frac{\partial z}{\partial y}=2$.
application
The gradient gives the normal vector of the tangent plane at a specific point. We can use the information in this standard to solve the following problem:
example. Show that the paraboloid $2 x^{2}+y^{2}-z=5$ and the sphere $(x-3)^{2}+(y-4)^{2}+(z-1 / 2)^{2}=\frac{33}{4}$ are tangent to each other at the point $(1,2,1)$. Find a plane tangent to both surfaces at $(1,2,1)$.

$$
\begin{array}{l|l}
F(x, y, z)=2 x^{2}+y^{2}-z & \\
\hline \nabla F=\langle 4 x, 2 y,-1\rangle & \\
\nabla F(1, y, z)=x^{2}-6 x+y^{2}-8 y+z^{2}-z+\frac{191}{4} \\
\nabla G=\langle 2 x,-6,2 y,-1\rangle & \\
\nabla G(1,2,2,1)=\langle-4,-4,-1\rangle
\end{array}
$$

Since $\langle 4,4,-1\rangle=-1\langle-4,-4,1\rangle$ so ∇F and ∇G are parallel. Therefore they are tangent at $(1,2,1)$.
tangent plane: $4(x-1)+4(y-2)-(z-1)=0$

$$
4 x+4 y-z=1
$$

