Standard 07: Partial Derivatives

partial derivatives

Recall that given a function of one variable, f(x), the derivative, f'(x), represents the rate of change of the function as x changes. The issue, we have more than one variable to vary. If we allow more than one to vary then we have an infinite number of ways we can change them: same speed, one faster than the other, different degrees of faster, etc. In this section we concentrate on changing only one variable at a time as the remaining variable (s) are held fixed.

In practice, the <u>partial derivative</u> of f = f(x,y) with respect to x is the derivative of f with respect to x while treating all other variable(s) as a constant. We denote the partial with respect to x as fx. We can also define a partial with respect to y similarly: take the derivative of f with respect to y while treating all other variables as constants. This definition can be extended to a function with more than two variables. Nou can also take higher partial derivatives; $(f_x)_x$, $(f_x)_y$, $(f_y)_y$. Alternative notation: $f_x(x,y) = f_x = \frac{2f}{2x} = \frac{2}{2x} (f(x,y)) = z_x = \frac{2f}{2x} = D_x f$.

example. Compute the second partial derivatives of the following functions:

(i)	f(x	= (y,)	$x^2 + y^2 + xy$	(ii)	hls	,t)=	t7 Inl	(s ²) + 2 - 3/54	Ŭ	(iii)	q(x, y, z) = +	$\frac{\sin(\eta)}{2^2}$				
£* =	2x +	oty		£.	= 7t	unts	$(z) = \frac{2}{4}$	27			$\frac{\sin(\gamma)}{2}$		(Gy)x =		<u>1</u>	
fy=	0+	24+	ĸ	fs	= t7	$\frac{2}{5}$ +	0	<u>4</u> -3/7 7 5		av F	$\frac{X}{2^2}$ cos(y)		((() () () () () () () () ()	- X	$\cos(y)$	
(F _x)	x =	2+((f _t) <u>-</u> = L	12 t ⁵	Inls	$) + \frac{108}{15}$		01 02=	$= -2 \frac{x \sin(y)}{2^3}$		(y)==	-2 2	-3 COS(N)
(f×)	x =	01:	L	Lf*) <u>s</u> = {	746	5 + C			(qx),	x = 0		()=)x:	= - <u>2 \$i</u>	<u>n(y)</u>	1
(fy)	x =	0+		(fs)	t =	7t ⁶ .	$\frac{2}{5}$ +	0		(ax)	$h_{\rm H} = \frac{1}{2^2} \cos[t]$		(gz)y	- <u>2× (</u>	<u>;05(y)</u> 2 ³	
(F4)	Y=	2+	0	(fs)	s = -	t7.5	2 5 ⁻² +	12 - 10/7 14 5		lax	$)_{z} = -2 \frac{\sin(y)}{z^{3}}$	<u>Ď</u>	(gz)2	= له ²	<u>(sin(4)</u> Z ³	
													_			

Clairaut's Theorem. Suppose that f is defined on a disk D that contains the point (a,b). If the functions fxy and f_{yz} are continuous on this disk then $f_{xy}(a,b) = f_{yx}(a,b)$.

gradient

There is a special vector called the gradient vector of f = f(x, y) defined by $\nabla f = \langle f_x, f_y \rangle$. This can be extended.

example. Find the gradient of the following vectors:(i) $(x,y) = x^2 + y^2 + xy$ (ii) $h(s,t) = t^3 \ln(s^2) + \frac{9}{t^3} - \sqrt[3]{s^4}$ (iii) $g(x,y,z) = \frac{x \sin(y)}{z^2}$ $\nabla f = \langle 2x + y, 2y + x \rangle$ $\nabla f = \langle 7t^6 \ln(s^2) - 27t^2 t^4, t^7 t^2 t^4 + t^7 t^6 t^7 \rangle$ $\nabla f = \langle \frac{\sin(y)}{z^2}, \frac{x}{z^2} \cosh(y), \frac{-2x \sin(y)}{z^2}$

chain rule

The name chain rule should immediately bring to mind the chain rule for derivative of single variable functions: if F(x) = f(g(x)) then $F'(x) = f'(g(x)) \cdot g(x)$. Alternative notation for this same phenomenon is: if y = f(x) and x = g(t)then $\frac{dy}{dt} = \frac{dy}{dt} \cdot \frac{dx}{dt}$. We want to extend this concept to multi-variable.

Gi	ven	a	fur	nctio	on	of	two		aria	bles	s f	(x,`	y) (and	two	o in	put	fi	Inct	ion	s x	ls,t) a	nd	y(s	,t),	we	con	n se	et u	o th	e
fo	llow	oina	tro	ee:																												
		f(x	,y)				We	ca	n r	00	US	e H	nis	dia	grai	m t	6 6	omp	oute	: th	e F	part	ial	der	ivat	ive	5 3	f s o	nd	<u>əf</u> Ət	•	
		/	Ň				То	find	1 2	e W	e n	love	fre	m	the	fo	x+ +1	ne '	top	of	the	tri	e (low	n ti	o Hr	ne f	wo	s's			
Xle	5,t)			s,t)			Ead	:h t	ime	we	, 90	doi	un (a lin	e w	e t	ake	the	e de	erivo	tive	e of	th	e to	op (ver	the	e ba	otto	m.		
							Τf	w	2 50	ontir	nue	do	wn	the	e tra	ee	we	mi	Iltip	ole ·	the	par	rtio	lde	eriv	ativ	ies.					
5	t		l S	t			If	we	e n	eed	to	res	set	to	the	f	to	hea	ad (dow	n o	ne	w 1	patt	n Hr	nen	we	pu	ta			
							plu	as k	bet	wee	en -	the	te	rm	s.																	

Following these rules we have $\frac{\partial f}{\partial s} = \frac{\partial f}{\partial x} \cdot \frac{\partial f}{\partial s} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial s}$ and $\frac{\partial f}{\partial t} = \frac{\partial f}{\partial x} \cdot \frac{\partial f}{\partial t} \cdot \frac{\partial y}{\partial t}$. This can be extended to f(x, y, z).

example. Suppose that z = f(x, y) is a function of x and y and we have input functions $x = s^2 - t^2$ and y = 2st. If $\frac{\partial z}{\partial s} = 10$ and $\frac{\partial z}{\partial t} = 0$ when (s,t) = (1,2), find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.

YE

≯ x

-> VF

application

/ \ 5 t

JG

The gradient gives the normal vector of the tangent plane at a specific point. We can use the information in this standard to solve the following problem:

example. Show that the paraboloid $2x^2+y^2-z=5$ and the sphere $(x-3)^2+(y-4)^2+(z-1/2)^2=\frac{33}{4}$ are tangent to each other at the point (1,2,1). Find a plane tangent to both surfaces at (1,2,1).

$(1 + (X_{1}, Y_{1}, z) = 2x^{c} + y^{c} - z$	$G(X, Y, z) = X^{2} - 6X + Y^{2} - 8Y + z^{2} - z + \frac{y}{4}$
$\nabla F = \langle 4x, 2y, -1 \rangle$	VG=<2x-6,2y-8,2z-1>
VF(1,2,1)= <4, 4,-1>	76(1,2,1)= (-4,-4,1)

Since $\langle 4, 4, -1 \rangle = -1 \langle -4, -4, 1 \rangle$ so ∇F and ∇G are parallel. Therefore they are tangent at (1, 2, 1).

tangent plane: 41x-1)+ 4(y-2)-(2-1)=0

4x + 4y - 2 = 1