## Standard 08: Directional Derivatives

## directional derivatives

Up until now we have seen two partial derivatives, $f_{x}$ and $f_{y}$. These derivatives represent the rate of change of $f$ as we vary $x$ while holding $y$ fixed and the rate of change as we vary $y$ while holding $x$ fixed, respectively. We now want to find the rate of change of $f$ as we vary $x$ and $y$ simultaneously. As mentioned previously, there are many ways to vary both $x$ and $y$ : different speeds, different directions, etc.

Suppose we want the rate of change of $f$ at the point $\left(x_{0}, y_{0}\right)$ and we want both $x$ and $y$ to increase but $x$ to increase twice as fast as $y$. We can model this change using position vectors, start at $(0,0)$ and increase $x$ twice as much as $y$. But wait! $\langle 2,1\rangle,\left\langle\frac{1}{5}, \frac{1}{10}\right\rangle,\langle 6,3\rangle$ all meet the criteria. We need a way to consistently find the rate of change in a direction.

We do this by insisting that the vector that defines the direction of change be a unit vector. For our example the unit vector is $\vec{u}=\left\langle\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right\rangle$. In some cases the direction of change may be given as an angle, when this happens we use the unit vector $\vec{u}=\langle\cos (\theta), \sin (\theta)\rangle$.

Now that we have discussed the direction of change in depth, we can now find the rate of change of $f$ in a specified direction:
The rate of change of $f(x, y)$ in the direction of the unit vector $\vec{u}=\langle a, b\rangle$ is called the directional derivative and is found by $D_{\vec{u}} f(x, y)=f_{x}(x, y) a+f_{y}(x, y) b=\nabla f(x, y) \cdot \vec{u}$.
example. Find the directional derivative of the following functions in the matching direction:

## (a) $f(x, y)=y e^{x}+y^{2}, \theta=\frac{\pi}{2}$

$\vec{u}=\left\langle\cos \left(\frac{\pi}{2}\right), \sin \left(\frac{\pi}{x}\right)\right\rangle=\langle 0,1\rangle$
$\nabla f(x, y)=\left\langle v e^{x}, e^{x}+2 v\right\rangle$
$D_{t} \cdot f=0 \cdot v e^{x}+1 \cdot e^{x}+2 v$
(b) $f(x, y, z)=x^{2} z+y^{3} z-x y z, \vec{v}=\langle-1,0,1\rangle$
$\vec{u}=\sqrt{\left.(-1)^{2}+(0)\right)^{2}+(1)^{2}}\langle-1,0,1\rangle=\left\langle\frac{-1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right\rangle$
$\nabla f=\left\langle 2 x z-v z, 3 y^{2} z-x z, x^{2}+y^{3}-x y\right\rangle$
$D_{0} f=-1 \cdot(2 x z-y z)+0 \cdot(3 y \mid z-x z)+1 \cdot\left(x^{2}+y^{3}-x y\right)$

## maximization

The maximum value of Düf is given by $\|\nabla f\|$ and will occur in the direction given by $\nabla f$. proof. Using the dot product version of the directional derivative, the formula of the dot product with $\cos \theta$, and the fact that the magnitude of a unit vector is 1 , we have $D_{u} f=\nabla f \cdot \vec{u}=\|\nabla f\|\|\vec{u}\| \cos (\theta)=\|\nabla f\| \cdot \cos (\theta)$. To maximize the formula we must maximize $\cos (\theta)$ which has a range of $[-1,1]$. The maximum value of $\cos (\theta)$ occurs at $\theta=0$. Therefore the maximum value of $D_{\vec{u}} f$ is $\|\nabla f\|$ and occurs when the angle between $\nabla f$ and $\vec{u}$ is 0 i.e. in the direction of the gradient. Similarly, the minimum value occurs when $\cos (\theta)=-1$ i.e. has value $-\|\nabla f\|$ in the direction $-\nabla f$
example. Find the maximal rate of change of the following functions at the point given:
(a) $f(x, y)=y e^{x}+y^{2},(a, b)=(0,1)$
(b) $f(x, y, z)=x^{2} z+y^{3} z-x y z,(a, b, c)=(1,0,1)$
$\nabla f=c y e^{*}, e^{x}+2 y^{2}$
$\nabla f(0,1)=\langle 1,1+2(1)\rangle=\langle 1,3\rangle$
$\left.\nabla f=<2 x z-y z, 3 y z-x z, x^{2}+y^{3}-x y\right\rangle$
$\nabla f(1,0,1)=\left\langle 2(1)(1)-(0)(1), 3(0)(1)-(1)(1),(1)^{2}+(0)^{2}-(0)(1)\right\rangle=\langle 2,-1,0\rangle$ $\|\nabla f(0,1)\|=\sqrt{(1)^{2}+(3)^{2}}=\sqrt{10}$
$\|\nabla f(1,0,1)\|=\sqrt{(2)^{2}+(-1)^{2}+(6)^{2}}=\sqrt{5}$

