Standard 08: Directional Derivatives

directional derivatives

Up until now we have seen two partial derivatives, fx and fy. These derivatives represent the rate of change of f as we vary x while holding x fixed and the rate of change as we vary y while holding x fixed, respectively. We now want to find the rate of change of f as we vary x and y simultaneously. As mentioned previously, there are many ways to vary both x and y: different speeds, different directions, etc.

Suppose we want the rate of change of f at the point (x_0, y_0) and we want both x and y to increase but x to increase twice as fast as y. We can model this change using position vectors, start at (0,0)and increase x twice as much as y. But wait! <2,1>, < $\frac{1}{5}$, $\frac{1}{10}$ >, <(b,3) all meet the criteria. We need a way to consistently find the rate of change in a direction.

We do this by insisting that the vector that defines the direction of change be a unit vector. For our example the unit vector is $\hat{u} = \langle \frac{2}{15}, \frac{1}{15} \rangle$. In some cases the direction of change may be given as an angle, when this happens we use the unit vector $\hat{u} = \langle \cos(\theta), \sin(\theta) \rangle$.

Now that we have discussed the direction of change in depth, we can now find the rate of change of f in a specified direction:

The rate of change of f(x,y) in the direction of the unit vector $\vec{u} = \langle a, b \rangle$ is called the <u>directional derivative</u> and is found by $D_{\vec{u}} f(x,y) = f_x(x,y)a + f_y(x,y)b = \nabla f(x,y) \cdot \vec{u}$.

example. Find the directional derivative of the following functions in the matching direction: (a) $f(x,y) = ye^x + y^2, \theta = \frac{\pi}{2}$ (b) $f(x,y,z) = x^2 z + y^3 z - xyz, v = (-1,0,1)$ $\hat{u} = \sqrt{1-1}v + (0)^2 + (1)^2 + (-1,0,1) = (-\frac{\pi}{12}, 0, \frac{\pi}{12})$ $\sqrt{1-1}v + (0)^2 + (1)^2 + (-1,0,1) = (-\frac{\pi}{12}, 0, \frac{\pi}{12})$ $\sqrt{1-1}v + (0)^2 + (1)^2 + (-1,0,1) = (-\frac{\pi}{12}, 0, \frac{\pi}{12})$ $\sqrt{1-1}v + (0)^2 + (0)^2 + (-1,0,1) = (-\frac{\pi}{12}, 0, \frac{\pi}{12})$ $\sqrt{1-1}v + (0)^2 + (0)^2 + (-1,0,1) = (-\frac{\pi}{12}, 0, \frac{\pi}{12})$ $\sqrt{1-1}v + (0)^2 + (0)^2 + (-1,0,1) = (-\frac{\pi}{12}, 0, \frac{\pi}{12})$ $\sqrt{1-1}v + (0)^2 + (0)^2 + (-1,0,1) = (-\frac{\pi}{12}, 0, \frac{\pi}{12})$ $\sqrt{1-1}v + (0)^2 + (0)^2 + (-\frac{\pi}{12}, 0, \frac{\pi}{12})$ $\sqrt{1-1}v + (0)^2 + (0)^2 + (-\frac{\pi}{12}, 0, \frac{\pi}{12})$ $\sqrt{1-1}v + (0)^2 + (0)^2 + (-\frac{\pi}{12}, 0, \frac{\pi}{12})$ $\sqrt{1-1}v + (0)^2 + (0)^2 + (-\frac{\pi}{12}, 0, \frac{\pi}{12})$ $\sqrt{1-1}v + (0)^2 + (0)^2 + (-\frac{\pi}{12}, 0, \frac{\pi}{12})$ $\sqrt{1-1}v + (0)^2 + (-\frac{\pi}{12}, 0, \frac{\pi}{12})$ $\sqrt{1-1}v + (0)^2 + (0)^2 + (-\frac{\pi}{12}, 0, \frac{\pi}{12})$ $\sqrt{1-1}v + (-\frac{\pi}{12}, 0, \frac{\pi}{12})$ $\sqrt{1-1}v + (-$

maximization

The maximum value of Diff is given by 11 ∇ fII and will occur in the direction given by ∇ f. proof. Using the dot product version of the directional derivative, the formula of the dot product with $\cos\theta$, and the fact that the magnitude of a unit vector is 1, we have $D_{ii}f = \nabla f \cdot \hat{i} = 11 \nabla f || 11 \hat{i} || \cos |\theta| = || \nabla f || \cdot \cos |\theta|$. To maximize the formula we must maximize $\cos(\theta)$ which has a range of (-1,1]. The maximum value of $\cos(\theta)$ occurs at $\theta = 0$. Therefore the maximum value of $D_{ii}f$ is $|| \nabla f ||$ and occurs when the angle between ∇f and ii is 0 i.e. in the direction of the gradient. Similarly, the minimum value occurs when $\cos(\theta) = -1$ i.e. has value $-|| \nabla f ||$ in the direction $-\nabla f$.

ex	am	>le.	Fin	d +	he	ma	xim	al r	ate	of	cho	ange	of	the	follo	nwiv	ng ·	fun	ctic	ms (at t	he	Poi	nt	giv	en:							
(0)	f(x	y)=	yex	+ 42	9	(a,b)	= ((3,1)								(6)	F(x	5,4)= x	2+1	3 2 - X	ΥZ,	(a,	b,c) = (1,0	,1)						
Vf	= (ve'	e ex	+21	>											Vf	= <	2×	z - 1	z, 31	12 - 2	XZ, X	2+y3	- XV	>								
٧f	(0,1) =	· < 1.	1+	2(1)	> =	< 1	37								Vf	(1.	0.1) = <	· 2(1)	(n) -	(D)(1)	.31	י. ס) (ו`)-(1)	b	(1) ² +	(0) ² ·	- (0)	1)>	= < ?	1	.0>
ΠΔ	flo	1311:	- - J(1) ² + (3	y₂ =	110										117	f(1	.0.1	.) =	JIZ	y ² + (·	$-1)^{2} + ($	ໜ ² ໋	- J	5								·