
Standard 12 : Double Integral -Polar Coordinates

polar coordinates

So far the region R could be described in terms of simple functions in Cartesian IRectangular coordinates . We now want

to consider regions that are better described in terms of polar coordinates. For instance
, finding the area of a

section of a disk using polar coordinates would eliminate the square roots .

example .
Use set builder notation to write out the region bounded by the northern hemisphere of the unit circle and the x-axis .
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Notice that the polar coordinates have constant limits of integration which makes it easier to compute .

It would be nice to convert our double integral into polar coordinates ,
but we can't just replace dx and dy with dr and dO .

In the case of polar coordinates
,
dA=rdrdO

.
We will see why later when doing change of coordinates .

Cartesian : Polar :
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example. Find the area bounded by the northern hemisphere of the unit circle and the x-axis using cartesian and polar coordinates .
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example. Compute SSR 2xydA where R is the region between the circle of radius z centered at the origin and the circle of radius 5

centered at the origin contained in the first quadrant.
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example . Set up,
but do not solve
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