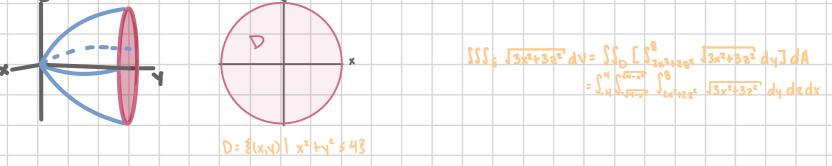
Standard 14: Triple Integrals - Cylindrical & Spherical Coo

Recall the last example from rectangular coordinates:

example. Evaluate SSE J3x2+322 dV where E is the solid bounded by y=2x2+222 and the plane y=8.



The projection onto the xz-plane, the region D, is a disk. The equation of the disk comes from $8=2x^2+2z^2$. This region can be best described using something like polar coordinates for the xy-plane. Instead of the usual x=rcos0 and y=rsin0, we use x=rcos0 and z=rsin0. Thus The region $D=\frac{2}{(x,y)}\frac{x^2+y^2}{x^2+y^2}\frac{43}{43}$ becomes $D=\frac{2}{(r,0)}\frac{1}{0}\frac{4}{9}\frac{2}{(r,0)}\frac{1}{0}\frac{4}{9}\frac{2}{(r,0)}\frac{1}{1}\frac{1}{2}\frac{1}{x^2+3}\frac{2}{z^2}\frac{1}{d}V = \int_{-4}^{4}\int_{-4}^{4}\int_{-4}^{4}\int_{-4}^{3}\frac{1}{x^2+3}\frac{1}{z^2}\frac{1}{d}y\frac{1}{dz}dx$

 $= \int_0^2 \int_0^{2\pi} \int_{2r}^8 \int_{3r^2}^{3r^2} \cdot r \, dy \, d\theta \, dr$

dA=rdrd0

<u>cylindrical coordinates</u>

This set of conversions is called <u>cylindrical coordinates</u> and is an extension of polar coordinates into three dimensions. In the example above we used the conversions for E's in which the D is in the xz-plane, there is a different set for each type of E we have seen: (i) E= $\{(x,y,z) \mid (x,y) \in D, u, (x,y) \le z \le u_2(x,y), 3\}$ (ii) E= $\{(x,y,z) \mid (x,y) \in D, u, (x,y) \le z \le u_2(x,y), 3\}$ (iii) E= $\{(x,y,z) \mid (x,y) \in D, u, (x,y) \le z \le u_2(x,y), 3\}$ (iii) E= $\{(x,y,z) \mid (x,y) \in D, u, (x,y) \le z \le u_2(x,y), 3\}$ (iii) E= $\{(x,y,z) \mid (x,y) \in D, u, (x,y) \le z \le u_2(x,y), 3\}$ (iii) E= $\{(x,y,z) \mid (x,y) \in D, u, (x,y) \le z \le u_2(x,y), 3\}$ (iv) E= $\{(x,y,z) \mid (x,y) \in D, u, (x,y) \le z \le u_2(x,y), 3\}$ (iv) E= $\{(x,y,z) \mid (x,y) \in D, u, (x,y) \le z \le u_2(x,y), 3\}$ (iv) E= $\{(x,y,z) \mid (x,y) \in D, u, (x,y) \le z \le u_2(x,y), 3\}$ (v) E= $\{(x,y,z) \mid (x,y) \in D, u, (x,y) \le z \le u_2(x,y), 3\}$ (v) E= $\{(x,y,z) \mid (x,y) \in D, u, (x,y) \le y \le u_2(x,y), 3\}$ (v) E= $\{(x,y,z) \mid (x,y) \in D, u, (x,y) \le y \le u_2(x,y), 3\}$ (v) E= $\{(x,y,z) \mid (x,y) \in D, u, (x,y) \le y \le u_2(x,y), 3\}$ (v) E= $\{(x,y,z) \mid (x,y) \in D, u, (x,y) \le y \le u_2(x,y), 3\}$ (v) E= $\{(x,y,z) \mid (x,y) \in D, u, (x,y) \le y \le u_2(x,y), 3\}$ (v) E= $\{(x,y,z) \mid (x,y) \in D, u, (x,y) \le y \le u_2(x,y), 3\}$ (v) E= $\{(x,y,z) \mid (x,y) \in D, u, (x,y) \le y \le u_2(x,y), 3\}$ (v) E= $\{(x,y,z) \mid (x,y) \in D, u, (x,y) \le y \le u_2(x,y), 3\}$ (v) E= $\{(x,y,z) \mid (x,y) \in D, u, (x,y) \le y \le u_2(x,y), 3\}$ (v) E= $\{(x,y,z) \mid (x,y) \in D, u, (x,y) \le y \le u_2(x,y), 3\}$ (v) E= $\{(x,y,z) \mid (x,y) \in D, u, (x,y) \le u_2(x,y), 3\}$ (v) E= $\{(x,y,z) \mid (x,y) \in D, u, (x,y) \le u_2(x,y), 3\}$ (v) E= $\{(x,y,z) \mid (x,y) \in D, u, (x,y) \le u_2(x,y), 3\}$ (v) E= $\{(x,y,z) \mid (x,y) \in D, u, (x,y) \le u_2(x,y), 3\}$ (v) E= $\{(x,y,z) \mid (x,y) \in D, u, (x,y) \le u_2(x,y), 3\}$ (v) E= $\{(x,y,z) \mid (x,y) \in D, u, (x,y) \le u_2(x,y), 3\}$ (v) E= $\{(x,y,z) \mid (x,y) \in D, u, (x,y) \le u_2(x,y), 3\}$ (v) E= $\{(x,y,z) \mid (x,y) \in D, u, (x,y) \le u_2(x,y), 3\}$ (v) E= $\{(x,y,z) \mid (x,y) \in D, u, (x,y) \le u_2(x,y), 3\}$ (v) E= $\{(x,y,z) \mid (x,y) \in D, u, (x,y) \le u_2(x,y), 3\}$ (v) E= $\{(x,y,z) \mid (x,y) \in D, u,$

X=rcos θ	N= rcos0	X=rcos0
y=rsin0	e=rsin0	z=rsin0
2 = 2	x= x	<u> </u>
$\chi^2 + \chi^2 = \gamma^2$	$N^2 + z^2 = r^2$	$\chi^{2} + 2^{2} = y^{2}$
dV=rdzdrd0	dV=rdxdrd0	dN=rdydrd0

example. Set up $SS_{E} \vee dV$ where E is the region that lies below the plane z = x + 2, above the xy-plane and between the cylinders $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$.

	X=rcos0	0 = z = X+2	$D = \frac{1}{2} (x, y) 1 = x^2 + y^2 = 43$
$\frac{x^{2}+y^{2}=1}{2}$	N= rsin0	becomes	$= \xi(r, \theta) 1 \le r \le 2, 0 \le \theta \le 2\pi$
2= X+2	2= 2	0 = z = rcos 0 +z	

SSSE V dV = So St So rcosetz rsine .rdzdrde

exa	mple	. Co	onve	rt H	ne foll	owind	integra	into	cylindrica	coord	linates:	S. S.	² Γ ^{-×} XV	z dzdyd	κ.
Rea	tan	aula	c Co	ordir	nate r	ound	s:		Cal	indrica		ersion	:		
64	x < 1		<u> </u>		-x	636	x ² + x ²		X - Y	COSA		3 2 - 2	dv= c	dadada	
0.5		,	-		· ·				~~ \	$\cos \phi$,	1 - 1 SILL	,	, , , ,		

Sketch xy-plane:

= 1-x2

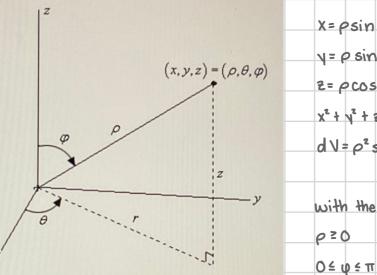
Rewrite bounds: O≤r≤1,0≤0≤ ₹,-rc

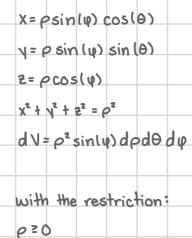
 $\int_0^{\pi/2} \int_0^{r^2} \int_{-r\cos\theta}^{r^2} (r\cos\theta) (r\sin\theta) (z) \cdot r dz dr d\theta$

-rcos0 = z =r

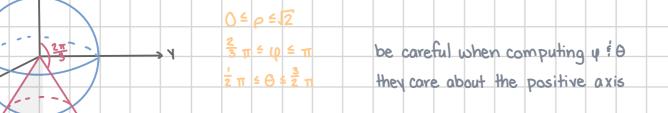
spherical coordinates

There is another extension of polar coordinates into three dimensions; it is given by rotating polar coordinates. <u>Spherical</u> <u>coordinates</u> are (p, 0, y) where p is the distance from the origin, 0 is the angle made with the positive x-axis in the xyplane, and y is the angle made with the positive z-axis. Here is a visual of the conversion from rectangular to spherical:





example. Set up $SSS_{\varepsilon} \ge dV$ where ε is inside both $x^2 + y^2 + z^2 = 2$ and the cone that makes an angle of $\pi/3$ with negative z-axis and has $x \le 0$.



 $\int \int \int_{\mathcal{C}} \frac{1}{2} x \, dV = \int_{\frac{2}{3}}^{\pi} \int_{\frac{1}{2}}^{\frac{3}{2}} \int_{0}^{12} (\rho \cos(\varphi)) (\rho \sin(\varphi) \cos(\theta)) \rho^2 \sin(\varphi) \, d\rho \, d\theta \, d\varphi$