Standard 15: Change of Variables

Change of Variables

In Calculus I we used the u-substitution rule, $\int_{a}^{b} f(g(x)) \cdot g'(x) dx = \int_{c}^{d} f(u) du$ where u = g(x), in order to take an integral in terms of x's to an integral in terms of u's. We want to extend this idea to double and triple integrals. In fact we have already done this when we converted double integrals to polar and triple integrals to cylindrical and spherical. We just didn't cover the details of the conversions.

transformations

 $\frac{1}{4}u^{2} + \frac{1}{4}v^{2} =$

 $u^{2} + v^{2} = 4$

Sometimes, like in the case of u-sub, the reason for the change in variable is to make the integral easier to compute. Other times we use change of variables to make the region into a nicer region. We call the equations that define the change of variables transformations. Typically, we start with a region R in xy-coordinates and transform it into a region S in uv-coordinates.

example. Determine the new region that we get by applying the given transformation to the region R. (i) $R = \tilde{z}(x,y) | x^2 + \frac{3t}{2} \leq 13$ by transformations $x = \frac{12}{2}, y = 3y$

 $x^{2} + \frac{1}{3b} y^{2} = 1$ $(\frac{y}{2})^{2} + \frac{1}{3b} (3y)^{2} = 1$

R

(ii) R is bounded by y=-x+4, y=x+1, and y= \$x-3 by transformations x=2lutv), y=2(u-v)

 $v = \frac{1}{2} + 2$

 $\chi = -x + 4$ $\chi = x + 1$ $\chi = \bar{3}x - \bar{3}$
 $\frac{1}{2}(u - v) = -\frac{1}{2}(u + v) + 4$ $\frac{1}{2}(u - v) = \frac{1}{2}(u + v) + 1$ $\frac{1}{2}(u - v) = \frac{1}{2}(\frac{1}{2}(u + v)) - \frac{1}{3}$

 u - v = -u - v + 8 u - v = u + v + 2 3u - 3v = u + v - 8

 2u = 8 -2v = 2 4v = 2u + 8

<u>54</u> <u>54</u> <u>54</u>

double integrals

u= 4

In order to change variables in a double integral we need the Jacobian of the transformation. The Jacobian of the transformation x = g(u, v), y = h(u, v) is $\frac{\partial(x, y)}{\partial(u, v)} = \frac{\partial x}{\partial u} \frac{\partial x}{\partial v} = \frac{\partial x}{\partial v} \frac{\partial y}{\partial v} = \frac{\partial x}{\partial v} \frac{\partial y$

R

u=4

V=-1

Suppose that we want to integrate f(x,y) over the region R. Under the transformation x=g(u,v), y=h(u,v) the region becomes S and the integral becomes, $SS_R f(x,y) dA= SS_S f(g(u,v), h(u,v)) \left| \frac{\partial(x,v)}{\partial(u,v)} \right| dA$ where dA is just denoting the change to du, dv.

example. Show that when changing to polar coordinates we have $dA = rdrd\theta$. We have transformations $x = rcos\theta$ and $y = rsin\theta$. The Jacobian for this transformation is $\frac{2(x,y)}{2(r,\theta)} = \frac{2x}{2r} \frac{2x}{2\theta} = cos\theta - rsin\theta = rcos^2\theta - (-rsin^2\theta) = rcos^2\theta + rsin^2\theta = r(cos^2\theta + sin^2\theta) = r$ Thus $dA = \frac{2(x,y)}{2(r,\theta)} drd\theta = rdrd\theta$

		6	.)))	- vL	. JA			:	llee 1							. Ltaa		a la	. 10			51- 5			519 -	5/2)		hee	-C-	-		lac	
ехи	mpie	EVI	лиат	C JJ	K VL	y an	With	ere i	5 15	The	Trape	5 2010		sgion	1014	n ve	TICE	s giv	en d		0,(9	, , , , ,	(-76,-1	, , 0		-16)	16)	using	TTC	151071	MICITIC	אוזדינ	102	
χΞ	zuł :	sv a	nd、	y = 2u	-3v.																											 		-
Sk	etch	ofr	egio	n:				Usir	ng x	ky H	nis W	ould	take	two	o inte	agral	s.Le	t's d	o th	e tro	nsfo	rma	tion.											
								(i)	N=	x			(ii)	N=	-x			(iii)	4=	-x+5				(iv)	N=	x-5								
	57		Ys.	P.,				2.1	2	2.11	12.1		2.1	2.1 -	-17.	12		2.	-2.1	= - (2)	12.	1-5		2.1	-2-1	- 211	3.1 -1							
		R		5				Cu		20			24					20						24		201								-
\leftarrow						*			60	F ()				40	=0				4u	:5					-60	= -5						 		-
y.				5					V	=0				U	=0				U	= 5/4					V	: ⁵ /u								_
	*		2	,																														
								The	reai	on S	is a	rect	analo	kicu s	h si	des	u=0	V=0	.u=	5/4,	v=5/	le. j.	e. 04	u≤	14 0	nd	DEN	5/6						
								_	-			13	(x.v)	- 2	3			12																
								Ine	30	CODI	an is	5 13	נעיאא	- 2	-31	G	-0	12.																-
					- ×-	5/10		So !	he	integ	gral i	is S.	RXt	dA =	So	70	llzui	3v) †	(2u-	3v))	-12]	d A												
			S												= 50	514	48 u	Ā																
															= [\$	16 74	275	h du																
															= (5	4 7																		
				u = 5/	4										_ 7	75/																		
															- 2	5																		-
																Ĕ																		-
tri		inte	aral																															

Triple integrals have an additional variable at each step. We start with a region E and use transformations x=g(u,v,w), y=h(u,v,w), and z=k(u,v,w) to transform the region to a new region F. We still need the Jacobian of the transformations: $\frac{\partial(x,v,z)}{\partial u} = \frac{\partial x}{\partial v} \frac{\partial x}{\partial w} = \frac{\partial x}{\partial u} (\frac{\partial v}{\partial w} \frac{\partial z}{\partial w} - \frac{\partial y}{\partial v} \frac{\partial z}{\partial v} - \frac{\partial y}{\partial w} \frac{\partial z}{\partial u} + \frac{\partial v}{\partial w} (\frac{\partial v}{\partial u} \frac{\partial z}{\partial v} - \frac{\partial v}{\partial v} \frac{\partial z}{\partial u} + \frac{\partial v}{\partial w} (\frac{\partial v}{\partial u} \frac{\partial z}{\partial v} - \frac{\partial v}{\partial v} \frac{\partial z}{\partial u} + \frac{\partial v}{\partial v} (\frac{\partial v}{\partial u} \frac{\partial z}{\partial v} - \frac{\partial v}{\partial v} \frac{\partial z}{\partial u} + \frac{\partial v}{\partial v} (\frac{\partial v}{\partial u} \frac{\partial z}{\partial v} - \frac{\partial v}{\partial v} \frac{\partial z}{\partial u} + \frac{\partial v}{\partial v} (\frac{\partial v}{\partial u} \frac{\partial v}{\partial v} - \frac{\partial v}{\partial v} \frac{\partial z}{\partial u} + \frac{\partial v}{\partial v} (\frac{\partial v}{\partial u} \frac{\partial v}{\partial v} - \frac{\partial v}{\partial v} \frac{\partial z}{\partial u} + \frac{\partial v}{\partial v} (\frac{\partial v}{\partial u} \frac{\partial v}{\partial v} - \frac{\partial v}{\partial v} \frac{\partial z}{\partial u} + \frac{\partial v}{\partial v} (\frac{\partial v}{\partial u} \frac{\partial v}{\partial v} - \frac{\partial v}{\partial v} \frac{\partial v}{\partial u} + \frac{\partial v}{\partial v} (\frac{\partial v}{\partial u} \frac{\partial v}{\partial v} - \frac{\partial v}{\partial v} \frac{\partial v}{\partial u} + \frac{\partial v}{\partial v} (\frac{\partial v}{\partial u} \frac{\partial v}{\partial v} - \frac{\partial v}{\partial v} \frac{\partial v}{\partial u} + \frac{\partial v}{\partial v} (\frac{\partial v}{\partial u} \frac{\partial v}{\partial v} - \frac{\partial v}{\partial v} \frac{\partial v}{\partial u} + \frac{\partial v}{\partial v} (\frac{\partial v}{\partial v} \frac{\partial v}{\partial v} - \frac{\partial v}{\partial v} \frac{\partial v}{\partial v} + \frac{\partial v}{\partial v} (\frac{\partial v}{\partial v} - \frac{\partial v}{\partial v} \frac{\partial v}{\partial v} + \frac{\partial v}{\partial v} (\frac{\partial v}{\partial v} - \frac{\partial v}{\partial v} \frac{\partial v}{\partial v} + \frac{\partial v}{\partial v} (\frac{\partial v}{\partial v} - \frac{\partial v}{\partial v} \frac{\partial v}{\partial v} + \frac{\partial v}{\partial v} (\frac{\partial v}{\partial v} - \frac{\partial v}{\partial v} \frac{\partial v}{\partial v} + \frac{\partial v}{\partial v} (\frac{\partial v}{\partial v} - \frac{\partial v}{\partial v} - \frac{\partial v}{\partial v} \frac{\partial v}{\partial v} + \frac{\partial v}{\partial v} (\frac{\partial v}{\partial v} - \frac{\partial v}{\partial v} - \frac{\partial v}{\partial v} - \frac{\partial v}{\partial v} \frac{\partial v}{\partial v} + \frac{\partial v}{\partial v} (\frac{\partial v}{\partial v} - \frac{\partial v}{\partial v} + \frac{$

The integral under this transformation is $SS_{\varepsilon} f(x,y,z) dV = SS_{\varepsilon} f(g(u,v,w),h(u,v,w),k(u,v,w)) \frac{\partial(x,y,z)}{\partial(u,v,w)} dV$ where dV is just denoting the change of variables.

example. Verify that $dV = p^2 \sin(\psi) d\rho d\theta d\psi$ when using spherical coordinates.

We	ha	ve	tra	nsta	br m	latio	ons	X =	psir	n(v)	COS	θ,	N=	psi	n(q)	sin	(0)	2=	ρC	oslø)				
The	Jo	col	pian	fo	r Hr	nis	trar	sfo	r ma	atio	n is	<u>5</u>	(x, y, i	<u>+)</u> =	sinty)cos	(8)	-PS	inly)	sinl0)	P	cosly) COS	(8)
															sinle	e) sin	(0)	psi	nly) (oslð)	P	cos	y)sir	(0)
															cos	s(y)			0			-psiv	ιφλ	

 $= \rho^{2} \sin^{3}(\psi) \cos^{2}(\Theta) - \rho^{2} \sin(\psi) \cos^{2}(\psi) \sin^{2}(\Theta) + O - \rho^{2} \sin^{3}(\psi) \sin^{2}(\Theta) - O - \rho^{2} \sin(\psi) \cos^{2}(\psi) \cos^{2}(\Theta)$

= -p² sinly)(sin²(y) + cos²(y))

= -p²sin(y)

Thus $dN = \left| -\rho^2 \sin(\psi) \right| d\rho d\theta d\psi = \rho^2 \sin(\psi) d\rho d\theta d\psi$