
Standard IS : Change of Variables

Change of Variables

In Calculus I we used the u-substitution rule
, Sflg(x) ·gix) dx=S fluldu where u=gix,

in order to take an integral in terms of

x's to an integral in terms of u's. We want to extend this idea to double and triple integrals . In fact we have already done this

when we converted double integrals to polar and triple integrals to cylindrical and spherical . We just didn't cover the

details of the conversions.

transformations

Sometimes
,
like in the case of u-sub

,
the reason for the change in variable is to make the integral easier to compute . Other times

we use change of variables to make the region into a nicer region .
We call the equations that define the change of variables

transformations. Typically , we start with a region R in xy-coordinates and transform it into a region s in uncoordinates .

example .
Determine the new region that we get by applying the given transformation to the region R .
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double integrals
In order to change variables in a double integral we need the Jacobian of the transformation . The Jacobian of the transformation
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Suppose that we want to integrate flx ,yl over the region R
.

Under the transformation x-glu , l
, y hlul the region becomes s and the
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integral becomes , SSR fIx
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example .
Show that when changing to polar coordinates we have dA=vdrdG.

We have transformations X=rcosO and y = r sin.
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example .
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triple integrals
Triple integrals have an additional variable at each step. We start with a region t and use transformations x = g(u,
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example . Verify that dV=psinlyl dodOdy when using spherical coordinates.

We have transformations x= psinlyl cost , y= psinlyl sin 18)
,
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