Standard 16: Line Integrals

Line Integrals

Vector Fields

A vector field on two (or three) dimensional space is a function \vec{F} that assigns to each point ($x, y)$ (or (x, y, z)) a two (or three) dimensional vector given by $\vec{F}(x, y)$ (or $\vec{F}(x, y, z))$. You might have seen these in physics to show the flow of a fluid or wind movement in the air. standard notation: $\vec{F}(x, y)=P(x, y) \vec{i}+Q(x, y) \vec{j}$ (or $\vec{F}(x, y, z)=P(x, y, z) \vec{i}+Q(x, y, z) j+R(x, y, z) \vec{k})$ where P, Q (and $R)$ are scalar functions.

example. Sketch the following vector field $\vec{F}(x, y)=-y \hat{i}+x_{j}$ sample evaluations:

$\vec{F}\left(\frac{1}{2}, \frac{1}{2}\right)=-\frac{1}{2}=+\frac{1}{2} \vec{\prime}$;
$\vec{F}\left(t-\frac{1}{2}\right)=\frac{1}{2}+\cdots \frac{1}{2} \overline{3}$
$\vec{E}\left(\frac{3}{2}, \frac{1}{4}\right)=-\frac{1}{4} \frac{1}{4}+\frac{3}{2}-\frac{1}{2} ;$

example. Find the gradient vector field of the function $f(x, y)=x^{2}+y^{2}$.
$F(x, y)=\nabla f(x, y)=2 x \vec{i}+2 y \vec{s}$

Line Integrals (with respect to arclength)
In calculus I, we integrated $f(x)$, a function of a single variable, over an interval [a,b], i.e. x takes on the values of the line segment from a to b. With line integrals we want to integrate the function $f(x, y)$, a function of two variables, over the curve C, ie. the values (x, y) must lie on the curve E. Note that this is different from double integrals where the values (x, y) came out of a $2 D$ region.

Given a curve e parameterized by $x=h(t), y=g(t)$ with $a \leq t \leq b$ (also written $\vec{r}(t)=h(t) \hat{i}+g(t) j$ for $a \leq t \leq b)$. The line integral of $f(x, y)$ along C is denoted by $\int_{e} f(x, y)$ ds where as is denoting that we are going over a curve (rather than area being dA).
Recall from arclength $L=\int_{a}^{b} d s$ where $d s=\sqrt{\left(\frac{d x}{d t}\right)^{2}}+\left(\frac{d y}{d t}\right)^{2} d t$.
We use this to compute the line integral $\int_{e} f(x, y) d s=\int_{a}^{b} f(h(t), g(t)) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t=\int_{a}^{b} f(n(t), g(t))\left\|\vec{r}^{\prime}(t)\right\| d t$.

Evaluate $S_{e} x y^{4} d s$ where e is the right half of the circle, $x^{2}+y^{2}=16$ traced counter clock wise.
The parametrization of $x^{2}+y^{2}=16$ is given by $x=4 \cos t, y=4$ int and the right half of the circle comes from $-\frac{\pi}{2} \leq \leq \leq \frac{\pi}{4}$
Now compute $d s=\left\|r^{\prime}(t)\right\|=\sqrt{(-4 \sin t)^{2}+(4 \cos t)^{2}} d t=4 d t$. Which gives the line integral $S_{2} x y^{4} d s=\int_{-1 / 2}^{\pi / 2} 4 \cos t(4 \sin t)^{4}(4) d t=\frac{8192}{5}$
example. Find the arclength of the curve parameterized by $r(t)=<4 \cos (t), 4 \sin (t)>$ for $-\frac{\pi}{2} \leq t \leq \frac{\pi}{2}$.

This line integral utilizes the fact that e is a smooth curve ie. continuous and $\vec{r}^{\prime}(t) \neq 0$ for all t. We now have to consider piece wise smooth curve, ie. $e^{\text {can }}$ be written as the union of a finite collection of smooth curves e_{1}, \ldots, e_{n} where the endpoint of e_{i} is the starting point of e_{i+1}. The line integral of the piecewise smooth curve $C=\bigcup_{i}^{i} e_{i}$ is $S_{e} f(x, y) d s=S_{e_{1}} f(x, y) d s+S_{e_{2}} f(x, y) d s+\ldots+S_{e_{n}} f(x, y) d s$.
example. Evaluate $S_{e} 4 x^{3} d s$ where C is the curve shown below:

For sake of completion we include a 3-dimensional example:
example. Evaluate Sexyzds where C is the helix given by $\vec{r}(t)=<\cos (t), \sin (t), 3 t)$ and $0 \leq t \leq 4 \pi$.

Line Integrals (with respect to x and/or y)
The previous section covered line integrals with respect to arclength. This section will look at line integrals with respect to x andlor y.
We start with a parametrization of a two-dimensional curve $C: x=x(t), y=y(t), a \leq t \leq b$.

- The line integral of f with respect to x is $\int_{e} f(x, y) d x=\int_{a}^{b} f(x(t), y(t)) x^{\prime}(t) d t$.
- The line integral of f with respect to y is $\int_{e} f(x, y) d y=\int_{a}^{b} f(x(t), y(t)) y^{\prime}(t) d t$.

You may also be asked to find the combination of these:

- $\int_{e} P d x+Q d y=\int_{e} P(x, y) d x+\int_{C} Q(x, y) d y$
example. Evaluate $\int_{C} \sin (\pi y) d y+y x^{2} d x$ where C is the line segment from $(1,4)$ to $(0,2)$.
parameterize: $\vec{r}(t)=(1-t)\langle 1,4\rangle+t\langle 0,2\rangle=\langle 1-t, 4-2 t\rangle$ for $0 \leq t \leq 1$
$\int_{e} \sin (\pi y) d y+y x^{2} d x=\int_{e} \sin (\pi y) d y+\int_{C} y x^{\}} d x$
$\int_{0}^{1} \sin (\pi(4-2 t))(-2) d t+\int_{0}^{1}(4-2 t)(1-t)^{2}(-1) d t$
$\left.\left.-\frac{1}{\pi} \cos (4 \pi-2 \pi t)\right]_{0}^{1}-\left(-\frac{1}{2} t^{4}+\frac{8}{3} t^{3}-5 t^{2}+4 t\right)\right]_{0}^{1}$
$-7 / 6$

In three-dimensions, $\int_{C} P d x+Q d y+R d z=\int_{e} P(x, y, z) d x+\int Q(x, y, z) d y+S_{C} R(x, y, z) d z$
example. Evaluate $\int_{C} y d x+x d y+z d z$ where C is given by $x=\cos t, y=\sin t, z=t^{2}, 0 \leq t \leq 2 \pi$.
$\iint_{c} y d x+x d y+z d z=\int_{c} y d x+\int_{c} x d y+\int_{c} z d z$
$=\int_{0}^{2 \pi} \sin t(-\sin t) d t+\int_{0}^{2 \pi} \cos t(\cos t) d t+\int_{0}^{2 \pi} t^{2}(2 t) d t$
$=-\int_{0}^{2 \pi} \sin ^{2} t d t+\int_{0}^{2 \pi} \cos ^{2} t d t+\int_{0}^{2 \pi} 2 t^{3} d t$
$=-\frac{1}{2} \int_{0}^{2 \pi}(1-\cos (2 t)) d t+\frac{1}{2} \int_{0}^{2 \pi}(1+\cos (2 t)) d t+\int_{0}^{2 \pi} 2 t^{3} d t$
$\left.=\left(-\frac{1}{2}\left(t-\frac{1}{2} \sin (2 t)\right)+\frac{1}{2}\left(t+\frac{1}{2} \sin (2 t)\right)+\frac{1}{2} t^{4}\right)\right]_{0}^{2 \pi}$
$=8 \pi^{4}$

Line Integrals of Vector Fields
We start with the vector field $\vec{F}(x, y, z)=P(x, y, z) \vec{\imath}+Q(x, y, z) \vec{\jmath}+R(x, y, z) \vec{k}$ and the three-dimension, smooth curve $\vec{r}(t)=x(t) \vec{\imath}+y(t) \vec{j}+z(t) \vec{k}$ $a \leq t \leq b$. The line integral of \vec{F} along C is $\int_{C} \vec{F} \cdot d \vec{r}=\int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \vec{r}^{\prime}(t) d t$.
example. Evaluate $\int_{e} \vec{F} \cdot d \vec{r}$ where $\vec{F}(x, y, z)=8 x^{2} y z \vec{\imath}+5 z \vec{j}-4 x y \vec{k}$ and C is the curve given by $\vec{r}(t)=t \vec{i}+t^{2} j+t^{3} \vec{k}, 0 \leq t \leq 1$.
$\vec{F}(\vec{r}(t))=8 t^{2}\left(t^{2}\right)\left(t^{3}\right) t+5 t^{3} \vec{j}-4 t\left(t^{2}\right) \vec{k}=8 t^{2} t+5 t^{3} j-4 t^{3} \vec{k}$
$\vec{r}^{\prime}(t)=i+2 t j+3 t^{2} \vec{k}$
$\vec{F}(\vec{r}(t)) \cdot \vec{r}^{\prime}(t)=8 t^{7}+10 t^{4}-12 t^{5}$
$\int_{8} t \cdot d \vec{t}=\int_{0}^{1} 8 t^{7}+10 t^{4}-12 t^{5} d t$ $\left.=\left(t^{8}+2 t^{5}-2 t^{6}\right)\right]_{0}^{1}$

We can also rewrite $\int_{e} \vec{F} \cdot d \vec{r}$ using the previous section:
$S_{e} \vec{F} \cdot d \vec{i}=\int_{0}^{b}\left(P_{i}+Q_{j}+R \vec{k}\right) \cdot\left(x^{\prime} i+y^{\prime} j+z^{\prime} \vec{k}\right) d t$
$=\int_{0}^{b}\left(P x^{\prime}+Q y^{\prime}+R z^{\prime}\right) d t$
$=\int_{a}^{b} P x^{\prime} d t+\int_{0}^{b} Q y^{\prime} d t+\int_{0}^{b} R z^{\prime} d t$
$=\int_{e} P d x+\int_{e} Q d y+S_{e} R d z$
$=\int_{e} P d x+Q d x+R d z$.
work
One application of line integrals of vector fields is work. Suppose we have a particle moving along a path C in the presence of a force field \vec{F}. The work performed is given by $W=\int_{c} \vec{F} \cdot \vec{r} d s=\int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \cdot \overrightarrow{\vec{r}^{\prime}(t)}\|\vec{r}(t)\| \cdot\|\vec{r}(t)\| d t=\int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \vec{r}^{\prime}(t) d t=\int_{c} \vec{F} \cdot d \vec{r}$.

example. Find the work done by the force field $\vec{F}(x)=\left\langle x y, 3 y^{2}\right\rangle$ and C is parameterized by $\vec{r}(t)=\left\langle\| t^{4}, t^{3}\right\rangle, 0 \leq t \leq 1$. $W=\int_{c} \vec{F} \cdot d$

$\int_{0}^{1} 484 t^{10}+9 t^{8} d t$
$44 t^{\prime \prime}+t^{9} \|_{0}^{1}$ $\vec{F}(\vec{r}(t))=\left\langle\left(1 t^{4}\right)\left(t^{3}\right), \overrightarrow{ }\left(t^{3}\right)^{2}\right\rangle$
$44+1-(0+0)$
$\vec{F}(\vec{r}(t)) \cdot \vec{r}^{\prime}(t)=484 t^{\prime t}+9 t^{8}$

Additional Formulas

arc length: $\int_{-c} f d s=S_{e} f d s$

vector: $\int_{-c} f d x=-\int_{e} f d x$
$\int_{-e} f d y=-\int_{e} f d y$
$\int_{-c} f d z=-\int_{e} f d z$
$\int_{-e} P d x+Q d y+R d z=-\int_{e} P d x+Q d y+R d z$

