Standard 17: Fundamental Theorem of Line Integrals

Fundamental Theorem for Line Integrals

Recall from calculus I the fundamental Theorem of calculus, $\int_{a}^{b} F^{\prime}(x) d x=F(b)-F(a)$.

Fundamental Theorem for Line Integrals

There is a version of this for certain vector fields, Suppose that C is a smooth curve given by $\vec{r}(t), a \leq t \leq b$ and that f is a function whose gradient vector, ∇f, is continuous on $\int_{e} \nabla f \cdot d \vec{r}=f(\vec{r}(b))-f(\vec{r}(a))$ where $\vec{r}(a)$ is the intial point on C and $\vec{r}(b)$ is the final point onc. proof. $S_{c} \nabla f \cdot d \vec{r}=\int_{a}^{b} \nabla f(\vec{r}(t)) \cdot \vec{r}^{\prime}(t) d t=\int_{a}^{b}\left(\frac{\partial f}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial f}{\partial y} \cdot \frac{d t}{d t}+\frac{f t}{\partial t} \cdot \frac{d y}{d t}\right) d t=\int_{a}^{b} \frac{d t}{d t}[f(\vec{r}(t))] d t=f(\vec{r}(b))-f(\vec{r}(a)) \cdot H$
example. Evaluate $\int_{C} \nabla f \cdot d \vec{r}$ where $f(x, y, z)=\cos (\pi x)+\sin (\pi y)-x y z$ and C is any path that starts at $(1,1 / 2,2)$ and ends at $(2,1,-1)$. note: the specified path is not given, but it is not necessary for this problem only $\vec{r}(a)$ and $\vec{r}(b)$ is needed.
$\int_{C} \pi f \cdot d f=f(2,1)-f(1,1 / 2,2)=\cos (2 \pi)+\sin \pi-2(1)(-1)-(\cos \pi+\sin (\pi / 2)-1(1 / 2)(2))=4$.

Definitions

Suppose that \vec{F} is a continuous vector field in some domain D.

1. \vec{F} is a conservative vector field if there is a function f such that $\vec{F}=\nabla f$.
2. The function f for a conservative vector field is called a potential function for the vector field.
3. $S_{e} \vec{F} \cdot d \vec{r}$ is independent of path if $S_{C_{1}} \vec{F} \cdot d \vec{r}=S_{C_{2}} \vec{F} \cdot d \vec{r}$ for any two paths C_{1} and C_{2} in D with the same intial and final points.
4. A path C is called closed if its initial and final points are the same point.
5. A path C is simple if it doesn't cross itself.
6. A region D is open if it doesn't contain any of its boundary points.
7. A region D is connected if we can connect any two points in the region with a path that lies completely in D.
8. A region is simply-connected if it is connected and it contains no holes

Facts

1. $\int_{C} \nabla f \cdot d \vec{r}$ is independent of path
2. If \vec{F} is a conservative vector field then $S_{e} \vec{F} \cdot d \vec{r}$ is independent of path.
3. If \vec{F} is a continuous vector field on an open connected region D and if $S_{e} \vec{F} \cdot d \vec{r}$ is independent of path then \vec{F} is a conservative v.f.
4. If $S_{e} \vec{F} \cdot d \vec{r}$ is independent of path then $S_{e} \vec{F} \cdot d \vec{r}=0$ for every closed path C.
5. If $S_{C} \vec{F} \cdot d \vec{r}=0$ for every closed path C then $S_{e} \vec{F} \cdot d \vec{r}$ is independent of path.

Conservative Vector Fields Potential Functions

Fact 2 gives us an easy way to evaluate the line integral $S_{e} \vec{F} \cdot d \vec{r}$ using a potential function for \vec{F}.
theorem. Let $\vec{F}=P_{i}+Q_{j}$ be a vector field on an open and simply-connected region D. Then if P and Q have continuous first order partial derivatives in D and $\frac{\partial P}{\partial y}=\frac{\partial 0}{\partial x}$, the vector field \vec{F} is conservative.
example. Determine if the following vector fields are conservative or not.
(a) $\vec{F}(x, y)=\left(x^{2}-y x\right) i+\left(y^{2}-x y\right) j$
$P=x^{2}-y x$ and $Q=y^{2}-x y \Rightarrow \frac{\partial P}{\partial y}=-x$ and $\frac{\partial Q}{\partial x}=-y \quad \Rightarrow \vec{F}$ is not conservative.
(b) $\vec{F}(x, y)=\left(2 x e^{x y}+x^{2} y e^{x y}\right) \vec{\imath}+\left(x^{3} e^{x y}+2 y\right) j$
$P=2 x e^{x y}+x^{2} y e^{x y}$ and $Q=x^{3} e^{x y}+2 y \Rightarrow \partial^{2 y}=2 x^{2} e^{x y}+x^{2} e^{x y}+x^{3} y e^{x y}=3 x^{2} e^{x y}+x^{3} \cdot e^{x y}$ and $\frac{\partial Q}{\partial x}=3 x^{2} e^{x y}+x^{3} v e^{x y} \Rightarrow \vec{F}$ is conservative.
If \vec{F} is a conservative function then a potential function exists. The potential function is f s.t. $\nabla f=\frac{\partial f}{\partial x} \vec{i}+\frac{\partial f}{\partial x} \vec{j}=P_{i}+Q_{j}=\vec{F}$. This is equivalent to $\frac{\partial f}{\partial x}=P$ and $\frac{\partial f}{\partial y}=Q$. Which we can solve by integrating: $f(x, y)=\int P(x, y) d x$ or $f(x, y)=\int Q(x, y) d y$.
examples. Determine if the following vector fields are conservative and if so, find a potential function for the vector field.
(a)

$$
\begin{aligned}
& F=\left(2 x^{3} y^{4}+x\right) i+\left(2 x^{4} y^{3}+y\right) j \\
& P=2 x^{3} y^{4}+x=\frac{\partial f}{\partial x} \Rightarrow \frac{\partial P}{\partial y}=8 x^{3} y^{3}>\text { it is conservative } \\
& Q=2 x^{4} y^{3}+y \frac{\partial f}{y} \Rightarrow \frac{\partial Q}{\partial x}=8 x^{3} y^{3} \\
& f(x, y)=\int P(x, y) d x \quad \text { OR } \quad f(x, y)=\int Q(x, y) d x \\
& =\int\left(2 x^{3} y^{4}+x\right) d x \\
& =\frac{1}{2} x^{4} y^{4}+\frac{1}{2} x^{2}+h(y) \\
& \frac{\partial f}{\partial y}=0,4,3+h^{\prime}(y)=0,4 u^{3}+y=10 \\
& =\int\left(2 x^{4} 3^{3}+y\right) d y \\
& =\frac{-1}{2} x^{4} v^{4}+\frac{1}{2} v^{2}+h(x) \\
& \frac{\partial f}{\partial x}=2 x^{2}, y^{4}+h^{\prime}(x)=2 x^{3}, 4+x=P \\
& \text { so } h(y)=y \\
& \text { so } h^{\prime}(x)=x \\
& h(y)=\int h(y) d y=\int y d y=\frac{1}{2} y^{2}+c \\
& h(x)=\int h^{\prime}(x) d x=\int \quad d x=\frac{1}{2} x^{2}+c \\
& \text { so } f(x, y)=\frac{1}{2} x^{4} v^{4}+\frac{1}{2} x^{2}+\frac{1}{2} v^{2}+c \\
& \text { so } f(x, y)=\frac{1}{2} x^{4} y^{4}+\frac{1}{2} y^{2}+\frac{1}{2} x^{2}+c \\
& \text { verify by } \nabla f=\left\langle 2 x^{3} y^{4}+x, 2 x^{4} y^{3}+y\right\rangle=\vec{F}
\end{aligned}
$$

(b) $\vec{F}(x, y)=\left(2 x e^{x y}+x^{2} y e^{x y}\right) \vec{i}+\left(x^{3} e^{x y}+2 y\right) \vec{j}$
see example 1 for verification of conservative

$$
\left.\frac{\partial F}{\partial x}=2 x e^{x y}+x^{2} \right\rvert\, y e^{x v} \text { and } \frac{\partial f}{\partial y}=x^{3} e^{x y}-2 y
$$

$$
f(x, y)=\int 2 x e^{x y}-x^{2} y e^{x y} \quad \text { OR } f(x, y)=\int 3^{3} e^{x y}+2 y d y
$$

use second one: $f(x, y)=x^{2} e^{x y}+y^{2}+h(x)$

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=2 x e^{x y}+x^{2}\left(e^{2 x}\right)+h^{\prime}(x)=2 x e^{x y}+x^{2} y e^{x y}=p \\
& h^{\prime}(x)=0 \Rightarrow h(x)=c \\
& f(x, y)=x^{2} e^{x y}+y^{2}+c
\end{aligned}
$$

We have no way to determine if a 3-dimensional vector field is conservative, but given a 3D conservative vi.f, we can find a potential function:

$$
\nabla f=\frac{\partial f}{\partial x} \vec{\imath}+\frac{\partial f}{\partial y} \vec{j}+\frac{\partial f}{\partial z} \vec{k}=P \vec{i}+Q j+R \vec{k}=\vec{f}
$$

example. Find a potential function for the vector field $\overrightarrow{\vec{F}}=\left(2 x \cos (y)-2 z^{3}\right) \vec{\imath}+\left(3+2 y e^{z}-x^{2} \sin (y)\right) \vec{j}+\left(y^{2} e^{z}-6 x z^{2}\right) \vec{k}$.
$\frac{\partial f}{\partial x}=2 x \cos (y)-2 z^{3} \quad \frac{\partial f}{\partial y}=3+2 y e^{z}-x^{2} \sin (y) \quad \frac{\partial f}{\partial z}=y^{2} e^{z}-6 x z^{2}-$ use this one
$f(x, y, z)=\int\left(y^{2} e^{z}-6 x z_{z}^{2}\right) d z=y^{2} e^{z}-2 x z^{3}+g(x, y)$ integrate with respect to z
$\frac{\partial f}{\partial x}=-2 z^{3}+g_{x}(x, y)=2 x \cos (v)-2 z^{3}=P \quad$ differentiate w/ respect to x set equal to P
$g_{x}(x, y)=2 x \cos (y) \Rightarrow g(x, y)=x^{2} \cos (y)+h(y)$ integrate partial
$f(x, y, z)=y^{2} e^{z}-2 x e^{3}+x^{2} \cos (y)$ th (y) plug $g(x, y)$ into $f(x, y)$
$\frac{\partial f}{\partial y}=2 y e^{2}-x^{2} \sin (y)+h^{\prime}(v)=3+2 y e^{z^{2}}-x^{2} \sin (y)=Q$ integrate with respect to $y i$ set equal to Q
$h^{\prime}(x)=3 \Rightarrow h(y)=3 y+c$ integrate partial
$f(x, y, z)=y^{2} e^{z}-2 x z^{3}+x^{2} \cos (y)+3 y+c$ plug $h(y)$ into $f(x, y, z)$
example. Evaluate $\int_{e} \vec{F} \cdot d \vec{r}$ where $\vec{F}=\left(2 x^{3} y^{4}+x\right) \vec{\imath}+\left(2 x^{4} y^{3}+y\right) j$ and C is given by $\vec{r}(t)=(t \cos (\pi t)-1) \vec{\imath}+\sin \left(\frac{\pi t}{2}\right) \jmath, 0 \leq t \leq 1$.
From example Sa, this vector field is conservative and the potential function is $f(x, y)=\frac{1}{2} x^{4} v^{4}+\frac{1}{2} x^{2}+\frac{1}{2} v^{2}+c$.
This integral is path independent so we can use $\int_{e} \overrightarrow{\vec{r}} \cdot d \vec{r}=\int \nabla f \cdot d \vec{r}=f(\vec{r}(1))-f(\vec{r}(0))$ where $\vec{r}(1)=\langle-2,1\rangle$ and $\vec{r}(0)=\langle-1,0\rangle$.
So $S_{c} \vec{F} \cdot d f=f(-2,1)-f(-1,0)=\left(\frac{21}{2}+c\right)-\left(\frac{1}{2}+c\right)=10$

