Standard 18: Curl and Divergence

Curl and Divergence

cur

Given the vector field $\vec{F} = P\hat{i} + Q\hat{j} + R\hat{k}$ the <u>curl</u> is defined to be curl $(\vec{F}) = (R_y - Q_z)\hat{i} + (P_z - R_x)\hat{j} + (Q_x - P_y)\hat{k}$.

There is an alternative (potentially easier) definition of the curl of a vector field, but it takes some set up. First we define the ∇ (pronounced del) operator, $\nabla = \frac{3}{2}\vec{x}\vec{i} + \frac{3}{2}\vec{y}\vec{j} + \frac{3}{2}\vec{k}$. We have used it previously when taking the gradient of a function ($\nabla f = \frac{3}{2}\vec{x}\vec{i} + \frac{3}{2}\vec{y}\vec{j} + \frac{3}{2}\vec{k}$). We can use ∇ to define the curl as curl(\vec{F}) = $\nabla \times \vec{F} = \vec{i}$ \vec{j} \vec{k} $\frac{3}{2}\vec{k}$ $\frac{3}{2}\vec{y}$ $\frac{3}{2}\vec{k}$

Facts

1. If f(x,y,z) has continuous second order partial derivatives then $curl(\nabla f) = \hat{0}$.

PQR

- 2. If F is a conservative vector field then curl F= 0.
- 3. If F is defined on all of 12° whose components have continuous first order partial derivative and curl(F)=0 then F is a conservative vector field

example. Determine if $\vec{F} = xy^2 z^3 t + x^3 y z^2 j + x^2 y^3 z \vec{k}$ is a conservative vector field.

fact 3 (or 2) tells us that all we need to do is compute the curl and see if we get the zero vector or not. $curl(\vec{r}) = \vec{t}$ \vec{j} \vec{r}

- $= \left(\frac{2}{2\sqrt{x^2y^2}} \frac{2}{2\sqrt{x^2y^2}} + \frac{2}{\sqrt{x^2y^2}} + \frac{2}{\sqrt{x^2}} + \frac{2}{\sqrt{x^2}} + \frac{2}{\sqrt{x^2y^2}} + \frac{2}{\sqrt{x^2$
- = < 3x1122 2x342 , 2x432 + 3x4222, 3x2422 2x423>

thus F is not conservative

2 2 2 23 23

xy²2³ x²y²2 x²y³2

divergence

† 0

Given the vector field $\vec{F} = P\vec{i} + Q\vec{j} + R\vec{k}$ the <u>divergence</u> is defined to be $div(\vec{F}) = \frac{\partial P}{\partial \chi} + \frac{\partial Q}{\partial \chi} + \frac{\partial R}{\partial z}$. This can be simplified by the ∇ operator to be $div(\vec{F}) = \nabla \cdot \vec{F}$.

example. Compute div(\vec{F}) of $\vec{F} = xy^2 z^3 \vec{i} + x^3 y z^2 \vec{j} + x^2 y^3 z \vec{k}$. div(\vec{F}) = $\frac{2}{3x} (xy^2 z^3) + \frac{2}{3y} (x^3 y z^2) + \frac{2}{3z} (x^2 y^3 z)$ = $y^2 z^3 + x^3 z^2 + x^2 y^3$

Fact

1. For any F=Pt+Qj+RE, div(curlF)=0