Standard 19: Green's Theorem

Green's Theorem

theorem. Let C be a positively oriented, piecewise smooth, simple closed curve and let D be the region enclosed by the curve. If P and Q have continuous first order partial derivatives on D then, $\int_{e} P d x+Q d y=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A$.
notation. line integrals under such curve conditions are sometimes written $\oint P d x+Q d y$.
example. Use Greens Theorem to evaluate $\S_{c} x y d x+x^{2} y^{3} d y$ where C is the triangle with vertices $(0,0),(1,0),(1,2)$ with positive orientation.

Let's sketch the curve C and the enclosed region D :

So using Green's theorem: $\oint_{C x y d x}+x^{2} y^{3} d y=\iint_{D} 2 x y^{3}-x d A$
$=\int_{0}^{1} \int_{0}^{2 x} 2 x y^{3}-x d y d x$
$\left.=\int_{0}^{1}\left(\frac{1}{2} x y^{4}-x y\right)\right]_{0}^{2 x} d x$
$=\int_{0}^{1} 8 x^{5}-2 x^{2} d x$
$\left.=\left(\frac{4}{3} x^{6}-\frac{2}{3} x^{2}\right)\right]_{0}^{1}=\frac{2}{3}$

Evaluate $\oint_{e} y^{3} d x-x^{3} d y$ where e is the positively oriented circle of radius 2 centered at the origin.
A circle will satisfy the conditions of Green's Theorem since it is closed and simple. $P=x^{3}$ and $Q=-x^{3}$. Using Green's Theorem: $\oint_{e} y^{3} d x-x^{3} d y=\iint_{\Gamma}-3 x^{2}-3 v^{2} d A$ $\begin{aligned} & =-3 \int_{0}^{\pi} \int_{0}^{2} r^{2} \cdot \cdot d r d \theta \\ & \left.=-3 \int_{0}^{2 \pi} \frac{1}{4} r^{4}\right]^{4} d \theta \\ & =-3 \int_{0}^{2 \pi} 4 d \theta \\ & =-3(4 \theta)]_{0}^{2 \pi}\end{aligned}$

Regions with Holes

Green's theorem will not work on regions that have holes in them, but many regions do have holes, so we must find a loophole to fix this. Let's start the process by trying it on a space without holes first. Let $D=D_{1} \cup D_{2}$ be the union of two regions with bound arr of D_{1}, being $C_{1} \cup C_{3}$ and the boundary of D_{2} being $C_{2} \cup\left(-C_{3}\right)$. Then the boundary of D would be $\left.C=\left(C_{1} \cup C_{3}\right) \cup\left(1, C_{2}\right) \cup C_{2}\right)=C_{1} \cup C_{2}$ and the region might look like this:

Starting with basic double integral laws: $\iint_{D}\left(Q_{x}-P_{y}\right) d A=\iint_{D_{, v D_{2}}}\left(Q_{x}-P_{y}\right) d A=\iint_{D_{1}}\left(Q_{x}-P_{y}\right) d A+\iint_{D_{2}}\left(Q_{x}-P_{y}\right) d A$ We use Green's integral on each part:

$$
=\oint_{C_{1} v C_{3}} P d x+Q d y+\oint_{C_{2} v-C_{y}} P d x+Q d y=\oint_{C_{1} P d x+Q d y}+\oint_{C_{3}} P d x+G d y+\oint_{C_{2}} P d x+Q d y+\oint_{C_{3}} P d x+a d y
$$

Therefore $\iint_{D}\left(Q_{x}-P_{y}\right) d A=\delta_{c}, v c_{2} P d x+Q d y=S_{c} P d x+Q d y$.

Now, let us consider what this tells us on a washer:

In its current state, the region D has a hole in it so we are unable to use Green's Theorem with the curve $C=C_{1} \cup C_{2}$. But, if we remove the hole by cutting the disk in half to make a new picture then we get the following sketch:
Which has region D_{1} with boundary $C_{1} \cup C_{2} \cup C_{5} \cup C_{4}$ and region D with boundary $C_{3} \cup C_{4} \cup\left(-C_{5}\right) \cup\left(-C_{6}\right)$ and we can use Green's Theorem on each of the parts. Going through the same calculation as above, we receive: $\left.\iint_{D}\left(Q_{x}-P_{y}\right) d A\right)=\oint_{C_{1} \cup C_{2} \cup C_{3} \cup C_{4} P d x+Q d y=\oint_{e} P d x+Q d y \text {. } . . .10}$
example
Evaluate $\S_{c} y^{3} d x-x^{3} d y$ where C are the two circles of radius 2 and radius 1 centered at the origin with positive orientation. $\int_{c} y^{3} d x-$ $x^{3} d y=-3 \iint\left(x^{2}+y^{2}\right) d A$

$$
\begin{aligned}
& =-3 \int_{0}^{2 \pi} \int_{1}^{2} 1_{1}^{1} d r d \theta \\
& =-3 \int_{0}^{2 \pi}\left[\frac{1}{4} 4^{4}\right]^{2} d \theta \\
& =-3 \int_{0}^{2 \pi} \frac{15}{4} d \theta \\
& =-3\left[\frac{15}{4} \theta\right]_{0}^{2 \pi}
\end{aligned}
$$

[^0]
[^0]: Additional formula:
 $A=\iint_{0} 1 d A$ so $Q_{x}-P_{y}=1$
 $\Rightarrow A=\oint_{C} x d y=-\oint_{c} y d x=\frac{1}{2} \oint_{x} d y-y d x$
 where C is the boundary of D

