Standard 19: Green's Theorem

Green's Theorem

theorem. Let C be a positively oriented, piecewise smooth, simple closed curve and let D be the region enclosed by the curve. If P and Q have continuous first order partial derivatives on D then, Se Pdx + Q dy = SSD ($\frac{2Q}{2x} - \frac{2P}{2y}$) dA. notation. line integrals under such curve conditions are sometimes written \$ Pdx + Q dy.

example. Use Green's Theorem to evaluate $S_C xydx + x^2y^3dy$ where C is the triangle with vertices (0,0), (1,0), (1,2) with positive orientation. Let's sketch the curve C and the enclosed region D: So using Green's theorem: $S_C xydx + x^2y^3dy = S_D zxy^3 - x dA$

 $= \int_{0}^{1} \int_{0}^{2x} 2xy^{3} - x \, dy \, dx$ $= \int_{0}^{1} \left[\frac{1}{2} xy^{4} - xy \right]_{0}^{2x} \, dx$ $= \int_{0}^{1} \left[\frac{1}{2} xy^{4} - xy \right]_{0}^{2x} \, dx$ $= \int_{0}^{1} \left[\frac{1}{2} xy^{4} - xy \right]_{0}^{2x} \, dx$ $= \int_{0}^{1} \left[\frac{1}{2} xy^{4} - xy \right]_{0}^{2x} \, dx$ $= \int_{0}^{1} \left[\frac{1}{2} xy^{4} - xy \right]_{0}^{2x} \, dx$

example. Evaluate $\oint_{e} y^3 dx - x^3 dy$ where C is the positively oriented circle of radius 2 centered at the origin. A circle will satisfy the conditions of Green's Theorem since it is closed and simple. P= y³ and Q=-x³. Using Green's Theorem: $\oint_{e} y^3 dx - x^3 dy = SD - 3x^2 - 3y^2 dA$

= $-3 \int_0^{2\pi} \int_0^2 r^2 \cdot r dr d\theta$

= -3 52" 4 r"] d0

 $= -3 \int_0^{2\pi} 4 d\theta$

=-3(40)727

= -24π

<u>Regions with Holes</u>

Cz

Green's theorem will not work on regions that have holes in them, but many regions do have holes, so we must find a loophole to fix this. Let's start the process by trying it on a space without holes first. Let D=D.vDz be the union of two regions with boundary of D. being C.vCz and the boundary of Dz being Czv(-Cz). Then the boundary of D would be C=(C,vCz)v(1-cz)vcz)=C.vCz and the region might look like this:

 c_1 C_1 S_1 We

Starting with basic double integral laws: $SS_D(Q_X - P_Y) dA = SS_{D,UD_2}(Q_X - P_Y) dA = SS_D, (Q_X - P_Y) dA + SS_D_2(Q_X - P_Y) dA$ We use Green's integral on each part: = $9_{c,UC_3}$ Pdx + Qdy + $9_{c_3U(-C_3)}$ Pdx + Qdy = 9_{c_1} Pdx + Qdy + 9_{c_3} Pdx + Qdy + 9_{c_2} Pdx + Qdy + 9_{c_3} Pdx + $9_{c_$

Therefore SSD (Qx-Ry)dA = \$c,vcz Pdx+ Qdy = Sc Pdx + Qdy.

Now, let us consider what this tells us on a washer:

In its current state, the region D has a hole in it so we are unable to use Green's Theorem with the curve C = C. U Cz. But, if we remove the hole by cutting the disk in half to make a new picture then we get the following sketch:

Which has region D, with boundary C,UCzUCzUCz and region D with boundary CzUCzUCzUCz) u(-Cz) and we can use Green's Theorem on each of the parts. Going through the same calculation as above, we receive: SSD(Qx-Py)dA) = \$c,UCzUCzUCzUCzUCzUCz Pdx+Qdy = \$Pdx+Qdy.

example. Evaluate $\oint_C y^3 dx - x^3 dy$ where C are the two circles of radius 2 and radius 1 centered at the origin with positive orientation. $\oint_C y^3 dx - x^3 dy = -3 SSp (x^2 ry^2) dA$

=-35 5, r3 di	r d O											
=-3 So [4,4]	de		Addi	ition	al fo	ormu	ıla:					
= -3 Son 15 do			A=	SS _D 1	L dA	50	Qx	- Py =	1			
= -3[40]2			=> A	= §	xd	= -	وب مع	x =	Į,	dy-	y dx	
$= -\frac{45\pi}{2}$			whe	re	C is	the	bau	ndan	N of	D		