Standard 21: Stoke's Theorem

Stoke's Theorem

This section covers a higher dimensional version of Green's theorem. We are going to relate a line integral to a surface integral. The curve that we utilize in the line integral is called the boundary curve. The orientation of the surface S will induce the positive orientation of C. The positive orientation of C is thought of as walking along the curve with your head pointed in the same direction as the unit normal vectors while the surface on the left.

Stokes' Theorem. Let S be an oriented smooth surface that is bounded by a simple, closed, smooth boundary curve C with positive orientation. Also let È be a vector field then, Sc È.dr = SSs curl(È).

example. Use Stokes' Theorem to evaluate $SS curl(\vec{F}) \cdot d\vec{S}$ where $\vec{F} = z^2 \vec{\iota} - 3xy \vec{j} + x^3 y^3 \vec{k}$ and S is the part of $z = 5 - x^2 - y^2$ above the plane z = 1. Assume that S is oriented upwards.

C

The boundary curve C will be where the surface intersects the plane 2 ± 1 : $x^2 + y^2 = 4$ at $2 \equiv 1$ with parameterization $\vec{\tau}(t) = 2 \cos t \vec{\tau} + 2 \sin t \vec{j} + \vec{k}$ for $0 \le t \le 2\pi$. By Stokes' Theorem: \hat{S}_s curl $\vec{F} \cdot d\vec{s} = \hat{S}_c \vec{F} \cdot d\vec{\tau}$

- $= \int_0^{2\pi} \vec{F}(\vec{r}(t)) \cdot \vec{r}'(t) dt$
- $= \int_0^{2\pi} (\overline{1} 12 \cos \theta \sin \theta \overline{1} + 64 \cos^3 \theta \sin^3 \theta \overline{k}) \cdot (-2 \sin \theta \overline{1} + 2 \cos \theta \overline{1}) d\theta$
- $= \int_{0}^{2\pi} -2 \sin t 24 \sin t \cos^{2} t \, dt$ = [2 cost + 8 cos³ t]₀^{2π}

example. Use Stokes' Theorem to evaluate SeF.dF where $\vec{F} = z^2 \vec{i} + y^2 \vec{j} + x \vec{k}$ and C is the triangle with vertices (1,0,0), (0,1,0), and (0,0,1) with counter-clockwise rotation.

= 0

The equation of the plane is x+++== 1 which can be written ==g(x,y)=1-x-y.

Cur	۱F=	ī	5	k	= 2	2]-	5 =	(22	-()-	,	Se	F•di	; =]]< ci	Arl F. o	5		
		<u>s</u>	27	50									= <u></u> (2	e-1)7.	dš		
		22	NS	×									= \$\$s (7	2-1)•	<u>t+j+ĭ</u> 11⊽f11	<u>2</u>	dA
													= {`{_{o}`}}_{o}^{-x}	* 2(1-)	x-y)-	1 dyd	x
flx	5,41) = 3	-gt	(_Y , X	: 2 .	Itx	ty						= \$' [1 - 2×4 -	- N ²]_ ²	r' dx	
Δt	= 1 {	-] +	ĸ										$= \int_0^1 x^2$	-x dx			
													= (± x	- ±x2)]			
D:	0 ≤ x	٤١	047	5-X	+1								= - <u>\</u>				