Standard 21: Stoke's Theorem

Stoke's Theorem

This section covers a higher dimensional version of Green's theorem. We are going to relate a line integral to a surface integral. The curve that we utilize in the line integral is called the boundary curve. The orientation of the surface S will induce the positive orientation of C. The positive orientation of C is thought of as walking along the curve with your head pointed in the same direction as the unit normal vectors while the surface on the left.

Stokes' Theorem. Let S be an oriented smooth surface that is bounded by a simple, closed, smooth boundary curve C with positive orientation. Also let \vec{F} be a vector field then, $S_{C} \vec{F} \cdot d r=\iint_{S}$ curl($\left.\vec{F}\right) \cdot d \vec{S}$.
example. Use Stokes' Theorem to evaluate \iint_{s} curl $(\vec{F}) \cdot d \vec{S}$ where $\vec{F}=z^{2} \vec{\imath}-3 x y \vec{j}+x^{3} y^{3} \vec{k}$ and S is the part of $z=5-x^{2}-y^{2}$ above the plane $z=1$. Assume that S is oriented upwards.

The boundary curve c will be where the surface intersects the plane $z=1: x^{2}+y^{2}=4$ at $z=1$ with parametrization $\vec{r}(t)=2 \cos t \vec{i}+2 \sin t \vec{j}+\vec{k}$ for $0 \leq t \leq 2 \pi$.
B_{y} Stakes' Theorem: \iint_{s} curl| $\mid \vec{F} \cdot d \vec{s}=\int_{e} \vec{F} \cdot d \vec{r}$

$$
\begin{aligned}
& =\int_{0}^{2 \pi} \vec{F}(\vec{r}(t)) \cdot \overrightarrow{\vec{r}}(t) d t \\
& \\
& =\int_{0}^{2 \pi}\left(\vec{i}-12 \cos t \sin t \vec{j}+44 \cos ^{3} t \sin ^{3} t \vec{k}\right) \cdot(-2 \sin t \vec{\imath}+2 \cos t \vec{\jmath}) d t \\
& =\int_{0}^{2 \pi}-2 \sin t-24 \sin t \cos ^{2} t d d t \\
& \\
& =\left[2 \cos t+8 \cos ^{3} t\right]_{0}^{2 \pi} \\
& \\
& =0
\end{aligned}
$$

example. Use Stokes' Theorem to evaluate $S_{C} \vec{F} \cdot d \vec{r}$ where $\vec{F}=z^{2} \hat{i}+y^{2} \vec{j}+x \vec{k}$ and C is the triangle with vertices $(1,0,0),(0,1,0)$, and $(0,0,1)$ with counter-clockwise rotation.

The equation of the plane is $x+y+z=1$ which can be written $z=g(x, y)=1-x-y$.

$$
\operatorname{curl} \overrightarrow{\vec{F}}=\left|\begin{array}{lll}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial v} & \frac{\partial}{\partial z} \\
z^{2} & v^{2} & x
\end{array}\right|=2 z \vec{\jmath}-\vec{\jmath}=(2 z-1) \vec{\jmath}
$$

$$
\begin{aligned}
& f(x, y, z)=z-g(x, y)=z-1+x+y \\
& \nabla f=\vec{i}+\vec{j}+\vec{k}
\end{aligned}
$$

$$
D: 0 \leq x \leq 1 \quad 0 \leq y \leq-x+1
$$

$$
\begin{aligned}
& \int_{e} \vec{F} \cdot d \vec{r}=\iint_{s} \operatorname{curl} \mid \vec{F} \cdot d \vec{s} \\
& =\iint_{s}(2 z-1) \vec{j} \cdot d \vec{S} \\
& =\iint_{s}(p z-1) \cdot \frac{\vec{i}+\vec{j}+\vec{k}}{\|v f\|}\|v F\| d A \\
& =\int_{0}^{1} \int_{0}^{-x+1} 2(1-x-y)-1 d y d x \\
& \left.=\int_{0}^{1}\left[y-2 x y-y^{2}\right]\right]_{0}^{x+1} d x \\
& =\int_{0}^{1}-x^{2}-x d x \\
& \left.=\left(\frac{1}{3} x^{3}-\frac{1}{2} x^{2}\right)\right]_{0}^{1} \\
& =-\frac{1}{6}
\end{aligned}
$$

