

Use the above rules to solve the following equations for x:

1.
$$
4 = \ln(x^2)
$$

2. $8 = \ln(x)^3$

3.
$$
2 = \ln((xe)^2)
$$

4. $2 = \ln(xe^2)$

5.
$$
6 = \ln(ex^2)
$$

6. $6 = \ln(2e^x)$

7.
$$
e^{3x} - e^{5x+1} = 0
$$

8. $3e^{3x} - 5e^{5x} = 0$

- Fill in the following rules: 1. $\ln(a) + \ln(b) = \ln(a \cdot b)$ 2. $\ln(a) - \ln(b) =$ 3. $\ln(x^a) = \mathbf{Q} \cdot \ln(\mathbf{X})$ 4. $\ln(\mathbf{A})$ 5. $e^{\ln(x)} = \mathsf{X}$ 7. $e^a \cdot e^b = e^{a+b}$ e^{a+b} 8. $e^{\frac{a}{b}} = b \overline{e^{a}}$
	- $\ln(x)$ (a) $\ln(ax^b) = \ln(a) + b \cdot \ln(x)$ 2. $\ln(a) - \ln(b) = \ln\left(\frac{a}{b}\right)$ X 6. $\ln(e^x) = \mathsf{X} \cdot \ln(\mathsf{e}) = \mathsf{X}$

Use the above rules to solve the following equations for x:

1. $4 = \ln(x^2)$ **2.** $8 = \ln(x)^3$ 3. $2 = \ln((xe)^2)$
 $2 = 2 \ln(xe^2)$ $\ln(x^2) = a \cdot \ln(x)$
 $2 = \ln(xe^2)$ **5.** $6 = \ln(ex^2)$ **1 x** 6. $6 = \ln(2e^x)$ **7.** $e^{3x} - e^{5x+1} = 0$ $e^{\frac{3}{2}} = \times$ 8. $3e^{3x} - 5e^{5x} = 0$ $4 = 2 \cdot ln(x)$ $\ln(x^a) = a \cdot \ln(x)$ $\sqrt{8}$ = $\sqrt[3]{ln(x)^3}$ $2 = ln(x)$ 2 = $ln(x)$ $e^{2} = e^{\ln(x)} = x$ $e^{2} = e^{\ln(x)}$ $e^{z} = e^{\ln(x)}$ $e^{\ln(x)} = x$ $e^{2} = x$ $e^{2} = x$ $ln(x^a) = \alpha \cdot ln(x)$ $\ln(x)$ $\frac{1}{2} = \ln(x) + \ln(e^z) \ln(a \cdot b) = \ln(a) + \ln(b)$ $1 = ln(xe)$ $2 = ln(x) + 2ln(e) ln(x^a) = a ln(x)$ 1⁼ In (x) ⁺ In(e) (n(a. b) ⁼ In(a) ⁺ (n(b) z ⁼ (n(x) ⁺ ² In(e) ⁼ 1 $1 = ln(x) + 1$
 $0 = ln(x)$ $\longrightarrow e^{\ln(x)} e^{\ln(x)}$
 $0 = ln(x)$ $\longrightarrow e^{\ln(x)} e^{\ln(x)}$ $O = \ln(x)$ $0 = ln(x)$ \longrightarrow $e^{-} = e^{ln(x)} e^{ln(x)} = x$ $e^{e} = e^{ln(x)} \longrightarrow 1 = x$ $e^{ln(x)} = x$ $1 = X$ $6 = ln(e) + ln(x^2)$ $ln(a \cdot b) = ln(a) + ln(b)$ b)= $ln(a) + ln(b)$ (b = $ln(z) + ln(e^x)$ $ln(a \cdot b)$ = $ln(a) + ln(b)$ $\ln 1 + \ln(x^2)$ $\ln(e) = 1$ $6 = ln(2) + xln(2)$ $ln(x^{\alpha}) = a \cdot ln(x)$ $b = 1 + 2 ln(x)$ $ln(x^a) = a ln(x)$ $\frac{1}{2}$ = $\ln(2) + X$ $\ln(2) = 1$ $5 = 2 ln(x)$ $\frac{5}{2}$ = ln(x) $\frac{5}{2}$ = e^{ln(x)} e^{ln(x)} = 1 6 - In (2) ⁼ X $e^{\frac{5}{2}} = x$ $e^{3x} = e^{5x+1}$ 8. $3e^{3x} - 5e^{5x} = 0$
 $3e^{3x} = 5e^{5x}$ $\pi(e^{3x}) = \ln(e^{5x+1})$ In 13e^{3x} Je
)= In(5e^{5x}) $3xln(e) = (5x+1)ln(e)$ $ln(x^a) = a \cdot ln(x)$ (n(x) In(3)⁺ Inte*) ⁼ (n(5) ⁺ Inle**) In(a. b) ⁼ In(a)⁺ (n(b) $3x = 5x+1$ $\ln(e) = 1$ |n(3)+3x|nle)=|n|5)+5x|nle) |n(x^a)=a·ln(x) $-2x = 1$ $ln(3) + 3x = ln(5) + 5x$ $ln(e) = 1$ $X =$ ⁻ $\frac{1}{2}$ $\ln(3) - \ln(5) = 2x$ $\ln(a) - \ln(b) = \ln(\frac{a}{b})$ $\ln(\frac{3}{5})$ =2x $\frac{1}{2}$ $ln(\frac{3}{5}) = x$

Use the above rules to solve the following equations for x:

1. $\ln(x^2 + 2x + 1) = 8$
2. $\ln(x^2 + 2x + 1) = \ln(x^2) + 1$

3.
$$
3e^{3x} - 5e^{-5x} = 0
$$

4. $3e^{3x} - 5e^{5x} = 0$

5.
$$
2\ln(x) = \ln(2) + \ln(3x - 4)
$$

6. $\ln(x) + \ln(x - 1) = \ln(4x)$

7. $log_9(x-5) + log_9(x+3) = 1$ 8. $log_2(x-2) + log_2(x+1) = 2$

Use the above rules to solve the following equations for x:

Exit Ticket Power Rule

Power Rule *d* $\frac{a}{dx}[x^n] = nx^{n-1}$

Use the product rule above to find the derivative of the following functions:

1. $y = x^3$ **2.** $y = 4x^2 + 5x - 6$

3.
$$
y = 5x^{\frac{1}{4}} - 4x^{\frac{1}{2}} + 7
$$

4. $g(x) = \frac{1}{3}x^{-3}$

5.
$$
g(x) = \frac{1}{x^5}
$$

6. $y(x) = \frac{1}{3\sqrt[3]{x}}$

7.
$$
R = \frac{15x^7 + 18x^5 - 21x^4}{3x}
$$

8. $L = \frac{\frac{3}{4}x^{\frac{11}{3}} + \frac{2}{5}x^{\frac{5}{3}} + \frac{5}{11}x^{\frac{2}{3}}}{x^{\frac{-8}{3}}}$

Exit Ticket Power Rule

Power Rule

d $\frac{a}{dx}[x^n] = nx^{n-1}$

Use the product rule above to find the derivative of the following functions:

1.
$$
y = x^3
$$

\n $\sqrt{2}$
\n $\sqrt{6}$
\n $\sqrt{6}$
\n $\sqrt{12}$
\n $\sqrt{2}$
\n $\sqrt{15}$
\n $\sqrt{17}$
\n

3.
$$
y = 5x^{\frac{1}{4}} - 4x^{\frac{1}{2}} + 7
$$

\n $\sqrt{25} \cdot \frac{1}{4}x^{\frac{1}{4}-1} - 4 \cdot \frac{1}{2}x^{\frac{1}{2}-1} + 0$
\n $\sqrt{25} \cdot \frac{3}{4}x^{\frac{3}{4}} - 2x^{\frac{1}{2}}$
\n4. $g(x) = \frac{1}{3}$
\n $g'(x) = \frac{1}{3}$
\n $\sqrt{25} = -\frac{1}{2}$

5.
$$
g(x) = \frac{1}{x^5} = x^{-5}
$$

\n6. $y(x) = \frac{1}{3\sqrt[3]{5}}$
\n6. $y(x) = \frac{1}{3\sqrt[3]{5}}$
\n7¹ = $\frac{1}{3} \cdot (-\frac{1}{3})$

4.
$$
g(x) = \frac{1}{3}x^{-3}
$$

\n $g'(x) = \frac{1}{3} \cdot (-3) x^{-3-1}$
\n $= -x^{-4}$

6.
$$
y(x) = \frac{1}{3\sqrt[3]{x}} = \frac{1}{3}x^{-\frac{1}{3}}
$$

\n
$$
\sqrt{1} = \frac{1}{3} \cdot \left(-\frac{1}{3}\right)x^{-\frac{1}{3}-1}
$$
\n
$$
= -\frac{1}{9}x^{-\frac{11}{3}}
$$

5.
$$
g(x) = \frac{1}{x^5} = x^{-5}
$$

\n $g'(x) = -5x^{-5}$
\n $= -5x^{-6}$
\n $= -5x^{-6}$
\n6. $y(x) = \frac{1}{3\sqrt[3]{x}} = \frac{1}{3}x^{-\frac{1}{3}}$
\n $\sqrt{1} = \frac{1}{3} \cdot (-\frac{1}{3})x^{-\frac{1}{3} - 1}$
\n $= -\frac{1}{9}x^{-\frac{11}{3}}$
\n7. $R = \frac{15x^7 + 18x^5 - 21x^4}{3x} = \frac{15x^3}{3x} + \frac{18x^5}{3x} - \frac{21x^4}{3x}$
\n $R = 5x^6 + \log x^4 - 7x^3$
\n $R = 5x^6 + \log x^4 - 7x^3$
\n $R = 5x^6 + 24x^3 - 21x^2$
\n $R = 30x^6 + 24x^3 - 21x^2$
\n $R = \frac{3}{12}x^3 + \frac{19}{5}x^3 + \frac{5}{11}x^3$
\n $L = \frac{3}{4}x^3 + \frac{2}{5}x^3 + \frac{5}{11}x^3$
\n $L = \frac{3}{4}x^3 + \frac{2}{5}x^3 + \frac{5}{11}x^3$
\n $L = \frac{3}{4}x^3 + \frac{19}{5}x^3 - 1 + \frac{2}{5} \cdot \frac{13}{5} - 1 + \frac{5}{11} \cdot \frac{2}{5} \cdot \frac{19}{5} - 1$
\n $= \frac{57}{12}x^3 + \frac{26}{15}x^3 + \frac{10}{35}x^3$

Exit Ticket Quotient Rule

Quotient Rule

$$
\frac{d}{dx}\left[\frac{f(x)}{g(x)}\right] = \frac{f'(x) \cdot g(x) - g'(x) \cdot f(x)}{[g(x)]^2}
$$

Use the quotient rule above to find the (fully simplified) derivative of the following functions:

1.
$$
y = \frac{x}{x+1}
$$
 2. $y = \frac{x^2}{3x-1}$

3.
$$
y = \frac{x^3}{\sqrt{x}+1}
$$
 4. $y = \frac{x^2-1}{x^2+1}$

5.
$$
g(x) = \frac{\ln(x) - 1}{\ln(x) + 1}
$$
 6. $g(x) = \frac{e^x - 1}{e^x + 1}$

Exit Ticket Quotient Rule

Quotient Rule

$$
\frac{d}{dx}\left[\frac{f(x)}{g(x)}\right] = \frac{f'(x) \cdot g(x) - g'(x) \cdot f(x)}{[g(x)]^2}
$$

Use the quotient rule above to find the (fully simplified) derivative of the following functions:

1.
$$
y = \frac{x}{x+1} \frac{\xi(x) = x}{(x+1)^2}
$$

\n2. $y = \frac{x^2}{3x-1}$
\n $\sqrt{\frac{1}{2} \frac{(y)(x+1) - (1/x)}{(x+1)^2}}$
\n3. $y = \frac{x^3}{\sqrt{x+1}}$
\n4. $y = \frac{x^2-1}{x^2+1}$
\n $\sqrt{\frac{1}{2} \frac{(2x^2)(x^2+1) - (\frac{1}{2}x^2)}{(3x-1)^2}}$
\n $= \frac{x^3}{(x+1)^2}$
\n $\sqrt{\frac{1}{2} \frac{(2x^2)(x^2+1) - (\frac{1}{2}x^2)(x^2)}{(x^2+1)^2}}$
\n $= \frac{3x^2-2x}{(x^2+1)}$
\n $\sqrt{\frac{1}{2} \frac{(2x^2)(x^2+1) - (2x)(x^2-1)}{(x^2+1)^2}}$
\n $= \frac{3x^2+2x}{(x^2+1)^2}$
\n $= \frac{3x^2+2x^2}{(x^2+1)^2}$
\n $= \frac{3x^2+6x^2-2x^2+2x}{(x^2+1)^2}$
\n $= \frac{3x^2+6x^2-2x^2+6x^2}{(x^2+1)^2}$
\n $= \frac{3x^2+6x^2-6x^2+6x^2}{(x^2+1)^2}$
\n $= \frac$

Exit Ticket Chain Rule

Chain Rule

$$
\frac{d}{dx}[f(g(x))] = f'(g(x))g'(x)
$$

Use the chain rule above to find the (fully simplified) derivative of the following functions:

1.
$$
f(x) = (3x^2 - 1)^3(4x^2 + 3)^5
$$

2. $f(x) = (2x^2 - 4)^7(2x^2 + 4)^8$

3.
$$
y = \frac{(x^2 - 1)^3}{x^2 + 1}
$$

4. $g(x) = \frac{\ln(x) - 1}{\ln(x) + 1}$

5.
$$
g(x) = \ln\left(\frac{e^x - 1}{e^x + 1}\right)
$$

6. $y(x) = \frac{x^9 - 1}{\sqrt{x^2 - 1}}$

Exit Ticket Chain Rule

Chain Rule

$$
\frac{d}{dx}[f(g(x))] = f'(g(x))g'(x)
$$

Use the chain rule above to find the (fully simplified) derivative of the following functions:

1.
$$
f(x) = (3x^2 - 1)^3(4x^2 + 3)^5
$$

\n $f'(x) = (3x^2 - 1)^3(4x^2 + 3)^5$
\n $f'(x) = 3(3x^2 - 1)^2(4x^2 + 3)^5$
\n $f'(x) = 3(3x^2 - 1)^2(4x^2 + 3)^5$
\n $f'(x) = 7(2x^2 - 4)^7(2x^2 + 4)^8$
\n $f'(x) = 7(2x^2 + 4)^6(4x)(2x^2 + 4)^8$
\n $f'(x) = 7(2x^2 + 4)^6(4x)(2x^2 + 4)^8$
\n $f'(x) = 7(2x^2 + 4)^6(4x)(2x^2 + 4)^8$
\n $f'(x) = 7(x^2 + 4)^6(4x)(2x^2 + 4)^7$
\n $f'(x) = 2x^2 + 4)^6(2x^2 + 4)^7(4x)(2x^2 + 4)^7$
\n $= (4x^2 + 3)^4(3x^2 - 1)^2(142x^3 + 14x)$
\n $= (4x^2 + 3)^4(3x^2 - 1)^2(142x^3 + 14x)$
\n $= (x^2 - 4)^6(2x^2 + 4)^7(56x^3 + 112x + 64x^3 - 128x)$
\n $= (2x^2 - 4)^6(2x^2 + 4)^7(56x^3 + 112x + 64x^3 - 128x)$
\n $= (2x^2 - 4)^6(2x^2 + 4)^7(2x^3 + 4)^8(2x^3 + 2x^2 + 4)^8(2x^3 + 2x^3 + 4)^8(2x^3 + 2x^2 + 4)^8(2x^3 + 4)^8(2x^3$

Exit Ticket Second Derivative Test

Second Derivative Test

Suppose $f(x)$ has a critical point $(f'(x) = 0$ or DNE) at $x = c$. We classify the critical points as follows:

- if $f''(c)$ is positive (concave up), then $f(c)$ is a **local minimum**
- if $f''(c)$ is negative (concave down), then $f(c)$ is a **local maximum**
- if $f''(x) = 0$, then we must use the first derivative test.

Use the second derivative test to solve the following problems:

1. What is the maximum product of two positive numbers whose sum is 100?

2. We have \$500 to build a fence around a rectangular field where the sides are made of different material. The vertical fencing cost $\frac{10}{ft}$, the bottom fencing is $\frac{2}{ft}$, and the top fencing is $$5/ft$. What is the maximum area we can enclose?

3. A company's sale price is a linear function of their monthly demand. When they charge \$60 a piece they sale 100 pieces and when they charge \$50 a piece they sale 200 pieces. Their monthly cost is \$5000 fixed cost and \$10 per piece produced. What is their maximum monthly profit?

Exit Ticket Second Derivative Test

Second Derivative Test

Suppose $f(x)$ has a critical point $(f'(x) = 0$ or DNE) at $x = c$. We classify the critical points as follows:

- if $f''(c)$ is positive (concave up), then $f(c)$ is a **local minimum**
- if $f''(c)$ is negative (concave down), then $f(c)$ is a **local maximum**
- if $f''(x) = 0$, then we must use the first derivative test.

Use the second derivative test to solve the following problems:

1. What is the maximum product of two positive numbers whose sum is 100?

Given:
$$
x + y = 100 \longrightarrow y = 100 - x
$$

\n?

\nFigure: $x + y = 100 \longrightarrow y = 100 - x$

\n?

2. We have \$500 to build a fence around a rectangular field where the sides are made of different material. The vertical fencing cost $\frac{10}{ft}$, the bottom fencing is $\frac{2}{ft}$, and the top fencing is $$5/ft$. What is the maximum area we can enclose?

$$
\frac{35}{400} \times \frac{6}{10} \times 10 \times 5 \times 10 \times 2 \times 500 \times 20 \times 25 - \frac{7}{10} \times 50 \times 25 = \frac{7}{10} \times 500 \times 20 \times 25 = \frac{7}{10} \times 500 \times 20 \times 25 = \frac{7}{10} \times 500 - \frac{7}{10} \times 500 = 25(\frac{250}{7}) - \frac{7}{20} \times \frac{250}{7} \times \frac{250}{7} = 25(\frac{250}{7}) - \frac{7}{20} \times \frac{250}{7} \times \frac{250}{7} = 25(\frac{750}{7}) - \frac{7}{20} \times \frac{250}{7} = 25(\frac{750}{7}) - \frac{7}{20} \times \frac{250}{7} = 25(\frac{750}{7}) = 25(\frac{125}{7}) = 25(\frac{125}{7})
$$

3. A company's sale price is a linear function of their monthly demand. When they charge \$60 a piece they sale 100 pieces and when they charge \$50 a piece they sale 200 pieces. Their monthly cost is \$5000 fixed cost and \$10 per piece produced. What is their maximum monthly profit?

$$
p_{0} + - slope^{2} + 20
$$
\n
$$
m = \frac{60 - 60}{200 - 100} = \frac{-10}{100} = -\frac{1}{10}
$$
\n
$$
m = \frac{60 - 60}{200 - 100} = \frac{-10}{100} = -\frac{1}{10}
$$
\n
$$
P(x) = R(x) - C(x)
$$
\n
$$
S(x) = -\frac{1}{10}(x - 200)
$$
\n
$$
S(x) = -\frac{1}{10}(x + 70)
$$
\n
$$
= -\frac{1}{10}x^{2} + 70
$$
\n
$$
= x(-\frac{1}{10}x + 70)
$$
\n
$$
= x(-\frac{1}{10}x + 70)
$$
\n
$$
= x(-\frac{1}{10}x + 70)
$$
\n
$$
= -\frac{1}{10}x^{2} + 70x
$$
\n
$$
= 8,500
$$
\n
$$
= 8,500
$$

Exit Ticket L'Hopital

L'Hopital If both $f(x)$ and $g(x)$ are differentiable functions such that:

\n- \n
$$
\lim_{x \to c} f(x) = 0 = \lim_{x \to c} g(x)
$$
\n such that\n
$$
\lim_{x \to c} \frac{f'(x)}{g'(x)}
$$
\n exists then\n
$$
\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}
$$
\n
\n- \n
$$
\lim_{x \to c} f(x) = \infty = \lim_{x \to c} g(x)
$$
\n such that\n
$$
\lim_{x \to c} \frac{f'(x)}{g'(x)}
$$
\n exists then\n
$$
\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}
$$
\n
\n

Identify when you can use L'Hopital. If you can, evaluate the limit:

1.
$$
\lim_{x \to \infty} \frac{3x^3 + 4x^2 - 3x + 5}{5x^4 + 3x^2 - 1}
$$
 2.
$$
\lim_{x \to 0^+} \frac{\ln(x + 1)}{\sqrt{x}}
$$

3.
$$
\lim_{x \to \infty} \frac{-6e^{2x} + 7}{3x^{2x} + 5}
$$
4.
$$
\lim_{x \to \infty} \frac{e^{2x} + 2e^x + 1}{e^x + 1}
$$

5.
$$
\lim_{x \to 0} \frac{\sin(x) - \sin(2x)}{\sin(x) + \sin(3x)}
$$
6.
$$
\lim_{x \to \infty} (1 + x)^{\frac{1}{x}}
$$

Exit Ticket L'Hopital

L'Hopital If both $f(x)$ and $g(x)$ are differentiable functions such that:

\n- \n
$$
\lim_{x \to c} f(x) = 0 = \lim_{x \to c} g(x)
$$
\n such that\n
$$
\lim_{x \to c} \frac{f'(x)}{g'(x)}
$$
\n exists then\n
$$
\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}
$$
\n
\n- \n
$$
\lim_{x \to c} f(x) = \infty = \lim_{x \to c} g(x)
$$
\n such that\n
$$
\lim_{x \to c} \frac{f'(x)}{g'(x)}
$$
\n exists then\n
$$
\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}
$$
\n
\n

Identity when you can use L'Hopital. If you can, evaluate the limit:
\n1.
$$
\lim_{x \to \infty} \frac{3x^3 + 4x^2 - 3x + 5}{5x^4 + 3x^2 - 1} \frac{\partial}{\partial \theta}
$$
\n2.
$$
\lim_{x \to 0^+} \frac{\ln(x + 1)}{\sqrt{x}} \frac{\partial}{\partial \theta}
$$
\n
$$
= \lim_{x \to 0^+} \frac{\frac{1}{x+1}}{\frac{1}{x}} = \lim_{x \to 0^+} \frac{\frac{1}{x+1} \cdot 2x^{\frac{1}{2}}}{\frac{1}{x} \cdot 120x} = 0
$$
\n
$$
= \lim_{x \to 0^+} \frac{x^{\frac{1}{12}}}{\frac{1}{1}} = \lim_{x \to 0^+} \frac{\frac{1}{x}}{\frac{1}{1}} = \theta^0
$$

3.
$$
\lim_{x \to \infty} \frac{-6e^{2x} + 7}{3x^{2x} + 5} \frac{\infty}{\infty}
$$

\n=
$$
\lim_{x \to \infty} \frac{-12e^{2x}}{\log e^{2x}}
$$

\n=
$$
\lim_{x \to \infty} -2
$$

\n=
$$
-\frac{2}{2}
$$

\n= <

5.
$$
\lim_{x \to 0} \frac{\sin(x) - \sin(2x)}{\sin(x) + \sin(3x)} = \frac{0 - 0}{0 - 0} = \frac{0}{0}
$$

\n=
$$
\lim_{x \to 0} \frac{\cos(x) - 2\cos(2x)}{\cos(x) - 3\cos(3x)}
$$

\n=
$$
\frac{1 - 2(1)}{1 - 3(1)}
$$

\n=
$$
\frac{-1}{-2}
$$

\n=
$$
\frac{1}{2}
$$

\n=
$$
\frac
$$

Exit Ticket Curve Sketching

Find everything you need to graph the function: $f(x) = e^{3x} - e^{5x}$

Exit Ticket Curve Sketching

 \rightarrow end behavior: $\lim_{x \to \pm \infty} f(x)$

Find everything you need to graph the function: $f(x) = e^{3x} - e^{5x}$

Step 1: Intercepts	1-2		
$0 = e^{3x} - e^{5x}$	$y = e^{8x} - e^{5x}$	$y = e^{0} - e^{0}$	$y = e^{3x} - 25e^{5x} = 0$
$0 = e^{5x} - e^{5x}$	$0 = e^{0} - e^{0}$	$f''(x) = 9e^{3x} - 25e^{5x} = 0$	
$0 = e^{3x} - 6e^{3x}$	$0 = e^{3x} - 25e^{5x} = 0$		
$0 = 2x$	$0 = e^{3x} - 25e^{5x} = 0$		
$2x = 0$	$0 = 2x$	$0 = 2x$	
$3e^{3x} - 5e^{5x} = 0$	$0 = 2x$		
$10(3) + 3x = \ln(5) + 6x$	$3e^{3x} - 6e^{5x} = 0$		
$10(3) + 3x = \ln(5) + 6x$	$0 = 2x$		
$10(3) - \ln(5) = 2x$	$0 = 2x$		
$10(3) - \ln(5) = 2x$	$0 = 2x$		
$10(3) - \ln(5) = 2x$	$0 = 2x$		
$10(3) - \ln(5) = 2x$	$0 = 2x$		
$10(3) - \ln(5) = 2x$	$0 = 2x$		

Exit Ticket Extrema

First Derivative Test Suppose $f(x)$ has a critical point at $x = c$. We classify the critical points as follows:

- if $f'(x)$ changes its sign from positive to negative at $x = c$, then there is a **local** maximum at $x = c$.
- if $f'(x)$ changes its sign from negative to positive at $x = c$, then there is a **local** minimum at $x = c$.
- if $f'(x)$ does not change its sign at $x = c$, then there is neither a local minimum or maximum at $x = c$.

Second Derivative Test Let $f(x)$ be a function such that $f'(c) = 0$ and the function has a second derivative in an interval containing *c*. We can classify the critical point as follows:

- if $f''(c) > 0$ then *f* has a local minimum at the point $(c, f(c))$.
- if $f''(c) < 0$ then *f* has a local maximum at the point $(c, f(c))$.
- if $f''(c) = 0$ then the test is inconclusive

What can you tell me about the following functions (increasing, decreasing, maximums, minimums):

1.
$$
f(x) = \frac{1}{3}x^3 - 3x^2 + 5x
$$

2. $f(t) = t - 3(t - 1)^{\frac{1}{3}}$

3.
$$
h'(x) = \frac{e^{3x} - 1}{e^{5x} + 1}
$$
 4. $f'(x) = e^{4x} - e^{2x} - 2$

5.
$$
f'(0) = 0
$$
; $f''(x) = 6x + 1$
6. $f'(1) = 0$; $g''(t) = -2e^{-t} + te^{-t}$

Exit Ticket Extrema

First Derivative Test Suppose $f(x)$ has a critical point at $x = c$. We classify the critical points as follows:

- if $f'(x)$ changes its sign from positive to negative at $x = c$, then there is a **local** maximum at $x = c$.
- if $f'(x)$ changes its sign from negative to positive at $x = c$, then there is a **local** minimum at $x = c$.
- if $f'(x)$ does not change its sign at $x = c$, then there is neither a local minimum or maximum at $x = c$.

Second Derivative Test Let $f(x)$ be a function such that $f'(c) = 0$ and the function has a second derivative in an interval containing *c*. We can classify the critical point as follows:

- if $f''(c) > 0$ then *f* has a local minimum at the point $(c, f(c))$.
- if $f''(c) < 0$ then *f* has a local maximum at the point $(c, f(c))$.
- if $f''(c) = 0$ then the test is inconclusive

What can you tell me about the following functions (increasing, decreasing, maximums, minimums):

1.
$$
f(x) = \frac{1}{3}x^3 - 3x^2 + 5x
$$

\n $f'(x) = x^2 - 6x + 5 = 0$
\n $(x-5)(x-1) = 0$
\n $\frac{1}{5}$
\n $f'(x) = x^2 - 6x + 5 = 0$
\n $(x-5)(x-1) = 0$
\n $\frac{1}{5}$
\n $f'(x) = \frac{1}{6} - \frac{1}{(6-1)^{3/3}}$
\n $f'(x) = \frac$

Exit Ticket Concavity

Concavity Let $f(x)$ be a twice differentiable function with $f''(c) = 0$ or DNE (i.e. *c* is a *possible* inflection point). We say that:

- $f(x)$ concave up on an interval $I = (a, b)$ if $f''(x) > 0$ for all x such that $a < x < b$
- $f(x)$ concave down on an interval $I = (a, b)$ if $f''(x) < 0$ for all x such that $a < x < b$
- *c* is an inflection point if the function is continuous at the point and the concavity changes at that point

Identify when the function is concave up and concave down:

1. $f(x) = 3x^5 - 5x^3 + 3$ 2. $f(t) = 3(t-1)^{\frac{1}{3}}$

3.
$$
h(x) = \frac{9}{3}x^{\frac{4}{3}} - \frac{1}{6}x^3 + 3
$$

4. $g(t) = te^{-t}$

5. $f''(x) = \ln(3x) - \ln(5)$ **6.** $f'(x) = e^{4x} - e^{2x} - 2$

Exit Ticket Concavity

Concavity Let $f(x)$ be a twice differentiable function with $f''(c) = 0$ or DNE (i.e. *c* is a *possible* inflection point). We say that:

- $f(x)$ concave up on an interval $I = (a, b)$ if $f''(x) > 0$ for all x such that $a < x < b$
- $f(x)$ concave down on an interval $I = (a, b)$ if $f''(x) < 0$ for all x such that $a < x < b$
- *c* is an inflection point if the function is continuous at the point and the concavity changes at that point

Identify when the function is concave up and concave down:

Identify when the function is concave up and concave down:
\n1.
$$
f(x) = 3x^5 - 5x^3 + 3
$$

\n $f'(x)=15x^4-15x^2$
\n $f'(x)=15x^4-15x^2$
\n $f'(x)=15x^4-15x^2$
\n $f'(x)=15x^4-15x^2$
\n $f'(x)=15x^4-15x^2$
\n $f'(x)=15x^3-30x =0$
\n $30x(x^5-1)=0$
\n $30x(x^5-1)=0$
\n $-\frac{1}{3}(x-1)^{5/3}=0$
\n $-\frac{1}{3}(x-1)^{5/3}=0$

Exit Ticket Newton's Method

Newton's Method

If x_n is an approximation of a solution of $f(x) = 0$ and if $f'(x) \neq 0$ the next approximation is given by,

$$
x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}
$$

Find the function you can apply Newton's method to:

1.
$$
x^2 = cos(x)
$$

2. $2 - x^2 = sin(x)$

Find an initial guess and write the equation for x_1 using Newton's method:

1. $f(x) = x^3 - 7x^2 + 8x - 1$
2. $f(x) = x^3 - x^2 - 15x + 1$

Use Newton's method and the initial guess given to find x_2 :

1. $f(x) = -x^3 + 4$; $x_0 = 1$ **2.** $f(x) = cos(x) - 2x$; $x_0 = 0$

Exit Ticket Newton's Method

Newton's Method

If x_n is an approximation of a solution of $f(x) = 0$ and if $f'(x) \neq 0$ the next approximation is given by,

$$
x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}
$$

Find the function you can apply Newton's method to:

1.
$$
x^2 = cos(x)
$$

\n $\mathbf{f(x)} = x^2 - cos(x)$
\n $\mathbf{f(x)} = cos(x) - x^2$
\n2. $2 - x^2 = sin(x)$
\n $\mathbf{f(x)} = 2 - x^2 - sin(x)$
\n $\mathbf{f(x)} = 2 + x^2$
\n $\mathbf{f(x)} = sin(x) - 2 + x^2$

Find an initial guess and write the equation for x_1 using Newton's method:

1.
$$
f(x) = x^3 - 7x^2 + 8x - 1
$$

\n $f(\mathbf{0}) = -1$ $f(\mathbf{0}) = 1 - 7 + 8 - 1 = 1$
\n $\mathbf{0} = \frac{1}{2}$
\n $\mathbf{0} = \frac{1}{2}$
\n $\mathbf{0} = \frac{1}{2} - \frac{(1/2)^3 - 7(1/2)^2 + 8(1/2) - 1}{3(1/2)^2 - 14(1/2) + 8}$
\n $\mathbf{0} = \frac{1}{2} - \frac{(1/2)^3 - 7(1/2)^2 + 8(1/2) - 1}{3(1/2)^2 - 14(1/2) + 8}$
\n $\mathbf{0} = \frac{1}{2} - \frac{(1/2)^3 - (1/2)^2 + 16(1/2) + 1}{3(1/2)^2 - 2(1/2) - 15}$

Use Newton's method and the initial guess given to find x_2 :

1.
$$
f(x) = -x^3 + 4
$$
; $x_0 = 1$
\n $\int_1^1 (x)z - 3x^2$
\n $x_1 = 1 - \frac{-11^3 + 4}{-311^3}$
\n $z_1 = -\frac{1}{2}$
\n $x_2 = 2 - \frac{-12^3 + 4}{-312^2}$
\n $z_1 = \frac{-1}{2}$
\n $z_2 = \frac{-4}{-12}$
\n $z_3 = \frac{1}{2}$
\n $z_4 = \frac{1}{3}$
\n $z_5 = \frac{1}{2}$
\n $z_6 = \frac{1}{2}$
\n $z_7 = \frac{1}{2}$
\n $z_8 = \frac{1}{2} - \frac{1}{2}$
\n $z_9 = \frac{1}{2}$
\n $z_1 = \frac{1}{2}$
\n $z_1 = \frac{1}{2}$
\n $z_2 = \frac{1}{2}$
\n $z_3 = \frac{1}{2}$
\n $z_4 = \frac{1}{3}$
\n $z_5 = \frac{1}{2}$
\n $z_6 = \frac{1}{2}$
\n $z_7 = \frac{1}{2}$
\n $z_8 = \frac{1}{2} - \frac{1}{2}$
\n $z_9 = \frac{1}{2}$
\n $z_1 = \frac{1}{2}$
\n $z_1 = \frac{1}{2}$
\n $z_2 = \frac{1}{2}$
\n $z_3 = \frac{1}{2}$
\n $z_4 = \frac{1}{2}$
\n $z_5 = \frac{1}{2}$
\n $z_7 = \frac{1}{2}$
\n $z_8 = \frac{1}{2}$
\n $z_9 = \frac{1}{2}$
\n $z_1 = \frac{1}{2}$
\n $z_2 = \frac{1}{2}$
\n $z_3 = \frac{1}{2}$
\n $z_4 = \frac{1}{2}$
\

Exit Ticket Anti-derivatives

Use the rules above to find the integrals below and check your answer:

1.
$$
\int 3^x - 3x^4 - \cos(x) dx
$$

2. $\int \frac{x^3 - e^2}{x^2} dx$

3.
$$
\int \frac{1}{\sqrt{1-x}} dx
$$
 4. $\int 6x(x^2+1)^2 dx$

Exit Ticket Anti-derivatives

Fill in the derivatives and anti-derivatives: *d dx* 1. [*kx*] = ^ˆ **k** $2. \int kdx = kx + C$ 3. $\frac{d}{dx} [kx^n] = k \cdot n \cdot x^{n-1}$ 4. x^{n-1} 4. $\int x^n dx = \frac{1}{n+1} x^{n+1} + C$ *d dx* 5. [ln(*x*)] = ^ˆ ¹ I *x* 6. $\int -dx = \ln |x| + C$ 7. $\frac{d}{dx} [\log_a(x)] = \frac{1}{x \cdot \ln(a)}$ 8. $\int \frac{1}{x \cdot \ln(a)}$ $\int \frac{1}{x \cdot \ln(a)} dx = \log_a(x) + C$ **9.** $\frac{d}{dx}[e^x] = e^{\mathbf{X}}$ 10. e^{x} 2 10. $e^{x}dx = e^{x} + C$ $11. \frac{d}{dx} [a^x] = \mathbf{0}^{\mathbf{X}}$ In $(\mathbf{0})$ 12. **b** $a^x dx = \frac{1}{b \ln(a)} \cdot a^x + C$ 13. $\frac{d}{dx} [\sin(x)] = \cos(x)$ 14. $\cos(x)$ $14. \int \cos(x) dx = \sin(x) + C$ $15. \frac{d}{dx} [\cos(x)] = -\sin(x)$ 16. $sin(x)$ $16. \int sin(x) dx = -cos(x) + C$ $17. \frac{d}{dx} [\tan(x)] = \sec^2(x)$ 18. $\sec^2(x)$ 18. $\int \sec^2(x)dx = \tan(x) + C$ $19. \frac{d}{dx} [\sec(x)] = \sec(x) \tan(x)$ 20. $\mathsf{sec}(x)$ fan (x) sec (x) $\cos(x)dx = \mathsf{sec}(x)$ + C X X. tan(x)

Use the rules above to find the integrals below and check your answer:

1.
$$
\int 3^x - 3x^4 - \cos(x)dx
$$

\n
$$
= \frac{1}{\ln|33} \cdot 3^x - \frac{3}{5} \cdot 2^5 - \sin(x) + C
$$
\n2. $\int \frac{x^3 - e^2}{x^2} dx = \int \frac{x^3}{x^2} - \frac{e^2}{x^3} dx$
\n
$$
= \int x - e^2 x^2 dx
$$

\n
$$
= \int x - e^2 x^2 dx
$$

\n
$$
= \frac{1}{2}x^2 + e^2 x^{-1} + C
$$

\n
$$
= \frac{1}{2}x^2 + e^2 x^{-1} + C
$$

\n
$$
= \frac{1}{2}x^2 + e^2 x^{-1} + C
$$

\n
$$
= \frac{1}{2}x^2 + e^2 x^{-1} + C
$$

\n
$$
= \frac{1}{2}x^2 + e^2 x^{-1} + C
$$

\n
$$
= \frac{1}{2}x^2 + e^2 x^{-1} + C
$$

\n
$$
= \frac{1}{2}x^2 + e^2 x^{-1} + C
$$

\n
$$
= \frac{1}{2}x^2 + e^2 x^{-1} + C
$$

\n
$$
= \frac{1}{2}x^2 + e^2 x^{-1} + C
$$

\n
$$
= \frac{1}{2}x^2 + e^2 x^{-1} + C
$$

\n
$$
= \frac{1}{2}x^2 + e^2 x^{-1} + C
$$

\n
$$
= \frac{1}{2}x^2 + e^2 x^{-1} + C
$$

\n
$$
= \frac{1}{2}x^2 + e^2 x^{-1} + C
$$

\n
$$
= \frac{1}{2}x^2 + e^2 x^{-1} + C
$$

\n
$$
= \frac{1}{2}x^2 + e^2 x^{-1} + C
$$

\n
$$
= \frac{1}{2}x^2 + e^2 x^{-1} + C
$$

\n
$$
= \frac{1}{2}x^2 + e^2 x^{-1} + C
$$

\n
$$
= \frac{1}{2}x^2 + e^2 x^{-1} +
$$