
Exit Ticket Log and Exponential Rules Practice

Fill in the following rules:

ln(a) + ln(b) =1. ln(a)� ln(b) =2.

ln(xa
) =3. ln

�
axb

�
=4.

eln(x) =5. ln(ex) =6.

ea · eb =7. e
a
b =8.

Use the above rules to solve the following equations for x:

4 = ln(x2
)1. 8 = ln(x)32.

2 = ln((xe)2)3. 2 = ln(xe2)4.

6 = ln(ex2
)5. 6 = ln(2ex)6.

e3x � e5x+1
= 07. 3e3x � 5e5x = 08.
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In (a .b) In (8)
a . In (x) (n(a) + b · In (x)

X X . (n(e) = X

ea
+ b

b ga

4 = 2 . (n(x) (n(x*) = a . In(x) 8' =3 In(x)3

2 = (n(x) 2 = (n(x)

e= el(x)eM(x) = X e= en(x)e(n(x)= X

e= X e = X

2 = 2(n(xe) (n (x*) = a . In (x) 2 = (n(x) + (n(2) (n(a .b) = In(a) + (n(b)

1 = In (xe) 2 = (n(x) + 2(n(e) (n (x*) = a . In(x)

1= In (x) + In(e) (n(a .b)= In(a) + (n(b) z = (n(x) + 2 In(e) = 1

1 = (n(x) + 1 In(e) = 1
0 = (n(x)

0 = In(x) · e= en(x) e(n(x) = X e= ein(x) (1 = X g(n(x)= X
1 = X

6 = In(e) +(n(x2)(n(a.b) = In(a) + (n(b) 6 = (n(z) + In(e
*
) In (a .b) = In(a) + (n(b)

6 = 1 + (n(x2) In(e) = 1
4 = (n(z) + X(n(e)(n(x) = a. (n(x)

6 = 1 +2(n(x)(n(x) = a. (n(x)
6 = (n(z) + X In(e) = 1

5 = 2(n(x)

E In (x) · e = g(n(x)g(n(x)= 1
6 - In (2) = X

e = X

ex_
5x+

3" = Ge5Y

Inle
*

) = In les**) In13e3"

)= In)5e
Y)

3x(n(e)= (5x+1)(n(e) (n (x*)= a. (n(x) In (3)+ Inte* ) = (n(5) + Inle
**
) In(a.b)= In(a)+ (n(b)

3x = 5x+ 1 (n(e) = 1
(n(3) + 3x(n(e) = (n(5) +5x(n(e)(n(x)= a . (n(x)

-2X = 1
In (3)+3x = (n (5) +5x Inle) = 1

X =
-5 In (3) - In 15) = 2x In(a) - In(b) = In(*)

(n(3) = 2x

[In(s) = X
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�
axb

�
=4.

ea · eb =5. e
a
b =6.

eln(x) =7. ln(ex) =8.

Use the above rules to solve the following equations for x:

ln(x2
+ 2x+ 1) = 81. ln(x2

+ 2x+ 1) = ln(x2
) + 12.

3e3x � 5e�5x
= 03. 3e3x � 5e5x = 04.

2 ln(x) = ln(2) + ln(3x� 4)5. ln(x) + ln(x� 1) = ln(4x)6.

log9(x� 5) + log9(x+ 3) = 17. log2(x� 2) + log2(x+ 1) = 28.
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In (a .b) In (8)
a . In (x) (n(a) + b · In (x)

ea
+ b b ga

X X . (n(e) = X

(n((x+12)= 8 (n((x+122) = (n(x2) + 1 2n(** ) = 1

2(n(x+ 1) = 8 (n((x+11) - In (x2) = 1 In(*) = E
(n(x + 1) = 4

In() = 1 en(** )
=e

e(n(x+ 1)
= e

X+ 1 = e4 In) * (2) = 1 X = e
X = e" - 1 X + 1 = xe= quadratic

formula
33"= Se5Y 3" = Ge5Y

In13e*) = In15 esY) In13e3"

)= In)5e
Y)

(n(3) +3x = (n(5) -5x In (3)+3x = (n (5) +5x
8x = In(5) In (3) - In 15) = 2x

X= (n)=) (n(3) = 2x · In(s) = X

(n(x2) = (n(2(3x - 4) In(x(x- 1) = (n(4x)
In(x2) = In (hx -8) In(x-x) = (n(4x)

ein(x2) = en(lx
- 8)

eln(x2- x)
= g(m(4x)= x5

Xx x2- x =4x
X(x25) = 0

X- 5x = 0 = O . 5

not"allowed due

loga((X- 5)(x +3)) = 1
logz((x-2)(X+1)) = 2 to In (x-1

loga(x2- 2x - 15) = 1 2logz((x-2)(x+1))
= za

-5 also not
allowed due to

glog(x2-2x - 15) 9 77 (x - 2)(x+ 1) = 4 |n(X)

x2- 2x - 15 =9 x2- x - 2 = 4

x2- x - b = 0
x2- 2x - 24

(x -3)(x + 2) = 0

(x -4)(x +4)= 0
X = -2

,
3

X= - 4
,
4

not"allowednotallowed
loga(X-5) logz(x+ 1)



Exit Ticket Power Rule

Power Rule
d

dx
[xn] = nxn�1

Use the product rule above to find the derivative of the following functions:

y = x3
1. y = 4x2

+ 5x� 62.

y = 5x
1
4 � 4x

1
2 + 73. g(x) = 1

3x
�3

4.

g(x) = 1
x55. y(x) = 1

3 3px
6.

R =
15x7+18x5�21x4

3x7. L =

3
4x

11
3 +

2
5x

5
3 +

5
11x

2
3

x
�8
3

8.
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y= 3x3
- 1

y = 4 .2x2" +5x' - 0

=3x = 8x +5

y= 5 .+xh 4 . Ex -
+ o

g'(x) = 5 . (-3)x
3-

=q X- -2x =
- x -

4

= x
- 5

= x

g'(x)=5x
- 5 - 1

Y = 5 . ( -5)x5
- 1

==5x
=-x

=1x =x(x+Ex +qx)

R = Sxi + bx" -7x =
R = 5 . 6x

*
+ 6.4x

*-7 .3x3
=3

= 30x5 + 24x - 21x
-5T



Exit Ticket Quotient Rule

Quotient Rule

d

dx


f (x)

g(x)

�
=

f 0
(x) · g(x)� g0(x) · f (x)

[g(x)]2

Use the quotient rule above to find the (fully simplified) derivative of the following functions:

y =
x

x+11. y =
x2

3x�12.

y =
x3

p
x+13. y =

x2�1
x2+14.

g(x) = ln(x)�1
ln(x)+15. g(x) = ex�1

ex+16.
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f(x) = X

g(x) = X+ 1

y'=()(X+x y' =
(2x)(3x-1 - (3)(x)

13x-12

6x2- 2x -3x
=Y =

(3x- 12

3x-2x
=

(x+i) =

(3x-1)2

x2- 1
-

x2 + 1

y'=
(3x)(x +1) - (Ex)(x) y' =

(2x)(x2+ 1) - (2x)(x2- 1)

(x +1)2 (x2 +1)3

2x+2x - 2x3 + 2X

3x +3x -2x =

(x2+ 1)2
=

(x + 1)2 4X
=

(xz+1)2

Ex +3x
=

(x + 1)2

g(x)=
(*)((n(x)+ 1) -* (In(x)-1

g'(x)=
e(e*+1) - e*(ex- 1)

((n(x)+1)2 leY + 112

(x+- =
e+ e-ex+ex

((n(x)+ 112 (e*+ 112

zex
= in+12

=

(ex + 1)3

2
=

x((m(x) + 112



Exit Ticket Chain Rule

Chain Rule

d

dx
[f (g(x))] = f 0

(g(x))g0(x)

Use the chain rule above to find the (fully simplified) derivative of the following functions:

f(x) = (3x2 � 1)
3
(4x2

+ 3)
5

1. f(x) = (2x2 � 4)
7
(2x2

+ 4)
8

2.

y =
(x2�1)3

x2+13. g(x) = ln(x)�1
ln(x)+14.

g(x) = ln
�
ex�1
ex+1

�
5. y(x) = x9�1p

x2�1
6.
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f(x)= 3(3x2- 132(6x)(4x2+3)5 f'(x)= 7(2x2 - 4)4(4x)(2x2+4)8

+ 5(4x2+3)4(8x)(3x=
- 1)3 + 8(2x2+ 4)7(4x)(2x2-4)7

= (4x2+3)"(3x2-122(18x(4x2 +3) + 40x(3x21) = (2x2-4(4(2x*+4)7(28x(2x2+4)+ 32x(2x2-4)

= (4x2+3)" (3x2 1) 2(72x+ 54x +120x- 40x)
= (2x2-4)4(2x2 +4)7(56x3+ 112x + 64x3 - 128x)

= (4x2+3)"(3x212(192x3 + 14x)
= (2x2- 4)4(23 +417(120x3 - 16x)

y=

3(x- 1
-

(2x)(x+ 1) - 2x(xx3
g'(x) =

*(In(x)x
(x2+ 143

=

bx(x2- 1)2(x2+1) - 2x(x2-1)
=(n(x)+ *- (n(x)+

(x2 +1)]
((n(x) + 1)2

=
(xz 1)2(ux(x2+1) - 2x(x2- 1) =

(x* +1)2 =

((n(x) + 1)2

(x-12(4x + 8x) 2
= (x2 + 1)2 =

X(In(x)+122

g(x) = (n(e
*
- 1 - (n(e + 1)

Y'(x) =
9x8(x- 1)" - E(x - 1)

."(2x)(x*
- 1

g(x) = ex - ex ((x2- 1)"2)2

=
9x8(x2 - 1)"2- (x21)"*(x*

- x)(x2-1)"
=

e
*(e+) - e

* (eY
- 1) (x2- 1)

-

(x"-1)"2

(ex- 1)(e* + 1)

qx(x2- 1) - (x- x)

exee I

(x2- 173/2

zex
=

9x10- 9x8- x0+ x
=

(e*
- 1)(ex+1) (x2

- 17312

8x10- 9x8+ X
I

(x2- 123/2



Exit Ticket Second Derivative Test

Second Derivative Test

Suppose f(x) has a critical point (f 0
(x) = 0 or DNE) at x = c. We classify the critical points

as follows:

• if f 00
(c) is positive (concave up), then f(c) is a local minimum

• if f 00
(c) is negative (concave down), then f(c) is a local maximum

• if f 00
(x) = 0, then we must use the first derivative test.

Use the second derivative test to solve the following problems:

1. What is the maximum product of two positive numbers whose sum is 100?

2. We have $500 to build a fence around a rectangular field where the sides are made of di↵erent

material. The vertical fencing cost $10/ft, the bottom fencing is $2/ft, and the top fencing

is $5/ft. What is the maximum area we can enclose?

3. A company’s sale price is a linear function of their monthly demand. When they charge $60
a piece they sale 100 pieces and when they charge $50 a piece they sale 200 pieces. Their

monthly cost is $5000 fixed cost and $10 per piece produced. What is their maximum monthly

profit?

Produced by Audriana Houtz, Mathematics Ph.D. student at the University of Notre Dame.
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Given : x+y = 100 < y = 100 - X 41= 100 -2x = 0 4(50) = 100150) - 1501
P= X . Y P = x(100 - x) 100 = 2x

= 5000 - 2500
= 100x - x2 50 = X

= 2500

$5
Given : 10y +5x + 10 y + 2x = 500 A = 25 - 1x = 0 A(2% = 25(250) - 272502

$10
$2

$10 Y 20y + 7x = 500 25 = Ex = 25(250)_25-X

20y = 500 -7x 250

A = x (500
-7

y =
500 - 7x 7

= X
= 25(250) - 25 . /250)

20

= 25x - Ex = 25(250) = 25(1)

point-slope form :
((x)= 10x + 5000 P'(x) =

- (X + 60 = 0

m=500 = -to
P(x)= R(x) - c(x) 60 = 5X

y - 50 = -

, j(X -200)
== Tox + 70x - 110x + 500 300 = X

S(x) = - 10x + 70
=

= Tox +60x -500
4(300) = - To 130032+601300) - 500

R(x) = X . S(X)

= X(-Tox + 70)
= - 9

,

000 + 18
,
000 - 500

=- x + 70x
= 8 ,
500



Exit Ticket L’Hopital

L’Hopital If both f(x) and g(x) are di↵erentiable functions such that:

• lim
x!c

f(x) = 0 = lim
x!c

g(x) such that lim
x!c

f 0
(x)

g0(x)
exists then lim

x!c

f(x)

g(x)
= lim

x!c

f 0
(x)

g0(x)

• lim
x!c

f(x) = 1 = lim
x!c

g(x) such that lim
x!c

f 0
(x)

g0(x)
exists then lim

x!c

f(x)

g(x)
= lim

x!c

f 0
(x)

g0(x)

Identify when you can use L’Hopital. If you can, evaluate the limit:

lim
x!1

3x3
+ 4x2 � 3x+ 5

5x4 + 3x2 � 1
1. lim

x!0+

ln(x+ 1)p
x

2.

lim
x!1

�6e2x + 7

3x2x + 5
3. lim

x!1

e2x + 2ex + 1

ex + 1
4.

lim
x!0

sin(x)� sin(2x)

sin(x) + sin(3x)
5. lim

x!1
(1 + x)

1
x6.
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O· J

L'H x3 I

Limox = 0 Wor =Maxi ·2

=imot
x = 0

8
u= eX

(u+1)(n+1)=im-1
= lim TUH = lim cuS
u-0 u=0

= lim-Z
X-0 = lim e

*
+

X-D
=-2

= O

0 - 0 go
0.0

= 8
= limcosx-2cOS = lim eln((1

+x)")

X+0

1 - 2(1) = liment
=
1- 3(1) it
=

=time
I

1 = lime'=
2

= = 1



Exit Ticket Curve Sketching

Curve Sketching Steps

1. Intercepts (if given f(x))

! x-intercept: set y = 0 and solve

! y-intercept: set x = 0 and solve

2. First Derivative Sign Line (monotonicity)

! critical points: f 0
(x) = 0 or DNE

! draw line, label critical points, mark positive/negative ranges

3. Second Derivative Sign Line (concavity)

! inflection points: f 00
(x) = 0 or DNE

! draw line, label inflection points, mark positive/negative ranges

4. Asymptotes & End Behavior

! domain issues: f(x) DNE
! vertical asymptotes: denominators=0

! end behavior: lim
x!±1

f(x)

Find everything you need to graph the function: f(x) = e3x � e5x
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Step 1: Intercepts
0= e3x- e5X y = e3(a)5(0) Step3 :

Y"-sign line

eSx = e3x = eo-e f"(x) = 9e3x-25ex= O

Inlex) = Inle3Y) = 1- 1 ge3x= 25eSY

5x = 3x = G In19e3*) = In 125eSY(

2X = 0 (n(9) +3x = (n(25) + 5x

X = G [In(s) = X

Step 2 : Y'-sign line inst
f'(x) = 3e3x- 5e5= 0

ze= Gesx

In 13e3) = In15eSY) Step4 : Asymptotes

(n(3)+ (3x)(n(e) = In (5)+ (5x)(n(e) vertical : none

In (3) + 3x = (n(5) + 6x horizontal
:

negativepositea-In(3)-In(5) = 2x

In (3) = 2x X -0

Eln(5)= X lim ex_e = o
X + -8

+

,
-

hint: try x= -100

|n(1) = 0

In(5)= -0.25 x) =) (n(x)10 2-300-5000 -so



Exit Ticket Extrema

First Derivative Test Suppose f(x) has a critical point at x = c. We classify the critical

points as follows:

• if f 0
(x) changes its sign from positive to negative at x = c, then there is a local

maximum at x = c.

• if f 0
(x) changes its sign from negative to positive at x = c, then there is a local

minimum at x = c.

• if f 0
(x) does not change its sign at x = c, then there is neither a local minimum or

maximum at x = c.

Second Derivative Test Let f(x) be a function such that f 0
(c) = 0 and the function has a

second derivative in an interval containing c. We can classify the critical point as follows:

• if f 00
(c) > 0 then f has a local minimum at the point (c, f(c)).

• if f 00
(c) < 0 then f has a local maximum at the point (c, f(c)).

• if f 00
(c) = 0 then the test is inconclusive

What can you tell me about the following functions (increasing, decreasing, maximums, minimums):

f(x) = 1
3x

3 � 3x2
+ 5x1. f(t) = t� 3(t� 1)

1
32.

h0
(x) = e3x�1

e5x+13. f 0
(x) = e4x � e2x � 24.

f 0
(0) = 0 ; f 00

(x) = 6x+ 15. f 0
(1) = 0 ; g00(t) = �2e�t

+ te�t
6.
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f(x)= x2- 4x + 5 = 0 f'(t) = 1 - (t - 1)
- 213

(x - 5)(x- 1) = 0
= 1 - (t- 3213 t = 0

,
1

,
2

+

! -
t

+

6 -1
-

!+
f =0 T +

f = 0

f'DNE

max min max neither min

es! = 0

u=e : n-u -z = 0

(n -z)(u +1) = 0

e2*
=ze= -

ex- 1 = 0
X = En(2) never

-

I "min
-

zinizt min

crit . pt. X = crit . pt . X = 1

f"(0)= b(0) + 1 g"(1) = -ze" + le
= 130

=-2 . Et t
· concave up =-

min. max
concave down



Exit Ticket Concavity

Concavity Let f(x) be a twice di↵erentiable function with f 00
(c) = 0 or DNE (i.e. c is a

possible inflection point). We say that:

• f(x) concave up on an interval I = (a, b) if f 00
(x) > 0 for all x such that a < x < b

• f(x) concave down on an interval I = (a, b) if f 00
(x) < 0 for all x such that a < x < b

• c is an inflection point if the function is continuous at the point and the concavity

changes at that point

Identify when the function is concave up and concave down:

f(x) = 3x5 � 5x3
+ 31. f(t) = 3(t� 1)

1
32.

h(x) = 9
3x

4
3 � 1

6x
3
+ 33. g(t) = te�t

4.

f 00
(x) = ln(3x)� ln(5)5. f 0

(x) = e4x � e2x � 26.
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f(x) = 15x" - 15x f'(t)= (t- 1)
- 213

f"(x)= 40x-30x
= 0 f"(t) =- (t - 1)

- 513
= 0

30x(x- 1) = 0
-E(t153

= 0

-

!
+

b
-

+ +

!
-

down up down up
up down

hi(x) = 4x"3 - Ex g(t) = e-t- tet
n"(x)= z4x23

- x = 0 g"(t)= -e
t

- e + + te
t

always->

4
= -Zet + te

-t

positive 3x23
= X

-

s
= e

-+
(- 2 +t) = 0 -

+

t = 2

down

In (3x) -In (5) = 0
f"(x) = 4e

**
-ze = 0

(n(3x) = In(6)
49"x = ze2x

3x = 5
(n(4)+4x = (n(z) + 2x

x = 53
2x = Im(z)

x = z(n(z)

-I -

,
+

EIn(E)



Exit Ticket Newton’s Method

Newton’s Method

If xn is an approximation of a solution of f(x) = 0 and if f 0
(x) 6= 0 the next approximation

is given by,

xn+1 = xn �
f(xn)

f 0(xn)

Find the function you can apply Newton’s method to:

x2
= cos(x)1. 2� x2

= sin(x)2.

Find an initial guess and write the equation for x1 using Newton’s method:

f(x) = x3 � 7x2
+ 8x� 11. f(x) = x3 � x2 � 15x+ 12.

Use Newton’s method and the initial guess given to find x2:

f(x) = �x3
+ 4 ; x0 = 11. f(x) = cos(x)� 2x ; x0 = 02.
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f(x) = x- coS(x) f(x) = z - x2- Sin(x)

f(x) = coS(x) -X f(x)= Sin(x) -2 + x
?

f(o) = -1 f(x= 1 - 7 +g 1 = 1 f(0)= 1 f(l)= 1 -1 - 15 + 1 = - 14

Xo = E Xo- or t
X,= - l'12A X,= _ "It i

f(x)= - 3x2 f'(x) = - Sin(x) - 2

X,
= 1 -

- (133 + 4
Xi = 0 -

cos(o)-2(0)
- 3(1)2 - sin(0)-2

= 1 - 53 = 2 =0-1

xz = 2 -

- (233+ 4 =- 3(2)2

=2-
Xz = E-COSS

= 2+

= 713 = z + COS



Exit Ticket Anti-derivatives

Fill in the derivatives and anti-derivatives:

d
dx [kx] =1.

ˆ
kdx =2.

d
dx [kx

n
] =3.

ˆ
xndx =4.

d
dx [ln(x)] =5.

ˆ
1

x
dx =6.

d
dx [loga(x)] =7.

ˆ
1

x · ln(a)dx =8.

d
dx [e

x
] =9.

ˆ
exdx =10.

d
dx [a

x
] =11.

ˆ
axdx =12.

d
dx [sin(x)] =13.

ˆ
cos(x)dx =14.

d
dx [cos(x)] =15.

ˆ
sin(x)dx =16.

d
dx [tan(x)] =17.

ˆ
sec

2
(x)dx =18.

d
dx [sec(x)] =19.

ˆ
sec(x) cos(x)dx =20.

Use the rules above to find the integrals below and check your answer:

ˆ
3
x � 3x4 � cos(x)dx1.

ˆ
x3 � e2

x2
dx2.

ˆ
1p
1� x

dx3.

ˆ
6x(x2

+ 1)
2dx4.
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K kx + C

k. n.xh-1 n+ xn
+

+ C

I In (x1 + C
X

I

X. In (a) loga(x) + C

ex ex + C

a
* In(a) inias ax + c

COSIX) Sin(x) + C

- sin(x) - CoS(x) + C

sec'(X) tam(x) + C

secixstam(x) sec(x) + C

tan(x)

=Jedx
= inisi .3" - Ex - Sin(x) + c = Sx - e-x2dx

check : 3"-3x" - cos(x) = Ex + e-x +

check : x2 -
ex

= S(1-x)-dx

Itguess : (1-x)" + C Itguess : (x2 + 113 + c

check : El1-X)- check: 31x2+1)?2x

2ndguess
: 211-x)"2 + c

check : (1-x)"


