Fill in the following rules:	
1. $\ln(a) + \ln(b) =$	2. $\ln(a) - \ln(b) =$
3. $\ln(x^a) =$	4. $\ln(ax^b) =$
5. $e^{\ln(x)} =$	6. $\ln(e^x) =$
7. $e^{a} \cdot e^{b} =$	8. $e^{\frac{a}{b}} =$

Use the above rules to solve the following equations for x:

1.
$$4 = \ln(x^2)$$
 2. $8 = \ln(x)^3$

3.
$$2 = \ln((xe)^2)$$
 4. $2 = \ln(xe^2)$

5.
$$6 = \ln(ex^2)$$
 6. $6 = \ln(2e^x)$

7. $e^{3x} - e^{5x+1} = 0$ 8. $3e^{3x} - 5e^{5x} = 0$

Fill in the following rules: 1. $\ln(a) + \ln(b) = \ln(a \cdot b)$ 3. $\ln(x^a) = a \cdot \ln(x)$ 5. $e^{\ln(x)} = x$ 7. $e^a \cdot e^b = e^{a+b}$

2. $\ln(a) - \ln(b) = \ln(\frac{a}{b})$ 4. $\ln(ax^b) = \ln(a) + b \cdot \ln(x)$ 6. $\ln(e^x) = x \cdot \ln(e) = x$ 8. $e^{\frac{a}{b}} = b e^{a}$

Use the above rules to solve the following equations for x:

1.
$$4 = \ln(x^2)$$

 $4 = 2 \cdot \ln(x)$ $\ln(x^{\alpha}) = \alpha \cdot \ln(x)$
 $2 = \ln(x)$
 $e^{2} = e^{\ln(x)}$ $e^{\ln(x)} = x$
 $e^{2} = x$
3. $2 = \ln(xe^{2})$
 $2 = 2 \ln(xe)$ $\ln(x^{\alpha}) = \alpha \cdot \ln(x)$
 $1 = \ln(xe)$
 $1 = \ln(xe)$
 $1 = \ln(x) + 1$ $e^{\ln(x)} = e^{\ln(x)}$ $e^{\ln(x)} = x$
 $2 = \ln(x) + 2 \ln(e^{2})$ $\ln(e^{2}) = \ln(e^{2})$
 $2 = \ln(x) + 2 \ln(e^{2})$ $\ln(e^{2}) = \ln(e^{2})$
 $1 = \ln(x) + 1$ $e^{\ln(x)} = e^{\ln(x)}$ $e^{\ln(x)} = x$
5. $6 = \ln(ex^{2})$ $1 = x$
 $6 = \ln(2e^{\pi})$ $\ln(e^{2}) = \ln(a) + \ln(b)$
 $b = 1 + \ln(x^{2}) \ln(a \cdot b) = \ln(a) + \ln(b)$
 $b = 1 + \ln(x^{2}) \ln(a \cdot b) = \ln(a) + \ln(b)$
 $b = \ln(2) + \ln(e^{x}) \ln(a \cdot b) = \ln(a) + \ln(b)$
 $b = \ln(2) + \ln(e^{x}) \ln(a \cdot b) = \ln(a) + \ln(b)$
 $b = \ln(2) + \ln(e^{x}) \ln(a \cdot b) = \ln(a) + \ln(b)$
 $b = \ln(2) + \ln(e^{x}) \ln(a \cdot b) = \ln(a) + \ln(b)$
 $b = \ln(2) + \ln(e^{x}) \ln(a \cdot b) = \ln(a) + \ln(b)$
 $b = \ln(2) + x \ln(e) \ln(x^{A}) = a \cdot \ln(x)$
 $b = \ln(2) + x \ln(e) \ln(x^{A}) = a \cdot \ln(x)$
 $5 = 2 \ln(x)$ $e^{\frac{5}{2}} = e^{\ln(x)} e^{\ln(x)} = 1$
 $1 + \frac{3}{2} + \frac{1}{2} + \frac{1}{2}$

Fill in the following rules:	
1. $\ln(a) + \ln(b) =$	2. $\ln(a) - \ln(b) =$
3. $\ln(x^a) =$	4. $\ln(ax^b) =$
5. $e^{a} \cdot e^{b} =$	6. $e^{\frac{a}{b}} =$
7. $e^{\ln(x)} =$	8. $\ln(e^x) =$

Use the above rules to solve the following equations for x:

1. $\ln(x^2 + 2x + 1) = 8$ **2.** $\ln(x^2 + 2x + 1) = \ln(x^2) + 1$

3.
$$3e^{3x} - 5e^{-5x} = 0$$
 4. $3e^{3x} - 5e^{5x} = 0$

5.
$$2\ln(x) = \ln(2) + \ln(3x - 4)$$

6. $\ln(x) + \ln(x - 1) = \ln(4x)$

7. $log_9(x-5) + log_9(x+3) = 1$ 8. $log_2(x-2) + log_2(x+1) = 2$

Fill	in the following rules:
1.	$\ln(a) + \ln(b) = \ln(a \cdot b)$
3.	$\ln(x^a) = \mathbf{a} \cdot \ln(\mathbf{x})$
5.	$e^a \cdot e^b = e^{a+b}$
7.	$e^{\ln(x)} = \mathbf{X}$

2. $\ln(a) - \ln(b) = \ln(\frac{a}{b})$ 4. $\ln(ax^{b}) = \ln(a) + b \cdot \ln(x)$ 6. $e^{\frac{a}{b}} = \sqrt[b]{e^{a}}$ 8. $\ln(e^{x}) = x \cdot \ln(e) = x$

Use the above rules to solve the following equations for x:

1. $\ln(x^2 + 2x + 1) = 8$	2. $\ln(x^2 + 2x + 1) = \ln(x^2) + 1$
In((x+1))=8	$\ln((x+1)^2) = \ln(x^2) + 1$ $2\ln(\frac{x+1}{x}) = 1$
$2\ln(x+1)=8$	$\ln((x+1)^2) - \ln(x^2) = 1$ $\ln(\frac{x+1}{x}) = \frac{1}{2}$
$\ln(x+1) = 4$	
$e^{\ln(x+1)} = e^4$	$\ln\left(\frac{(x+1)^{z}}{x^{z}}\right) = 1 \qquad e^{\ln\left(\frac{x+1}{x}\right)} = e^{\frac{1}{z}}$
$x_{H} = e^{4}$	$\ln\left(\left(\frac{x+1}{x}\right)^{2}\right) = 1 \qquad \frac{x+1}{x} = e^{\frac{1}{2}}$
X = e^{4}-1 3. $3e^{3x} - 5e^{-5x} = 0$	4. $3e^{3x} - 5e^{5x} = 0$ $x + 1 = xe^{\frac{1}{2}}$ quadratic for mula
$3e^{3x} = 5e^{-5x}$	$3e^{3x} = 5e^{5x}$
$\ln(3e^{3x}) = \ln(5e^{5x})$	
	$\ln(3e^{3x}) = \ln(5e^{5x})$
ln(3)+3x = ln(5) - 5x	ln(3)+3x = ln(5)+5x
$8 \times = \ln(\frac{5}{3})$	$\ln(3) - \ln(5) = 2x$
$x = \frac{1}{8} \ln(\frac{5}{3})$	In(==)=2× → ±In(==)=×
5. $2\ln(x) = \ln(2) + \ln(3x - 4)$	6. $\ln(x) + \ln(x-1) = \ln(4x)$
$\ln(x^2) = \ln(2(3x-4))$	ln(x(x-1)) = ln(4x)
$\ln(x^2) = \ln(6x - 8)$	$\ln(x^{2}-x) = \ln(4x)$
$e^{\ln(x^2)} = e^{\ln(6x-8)} = \frac{1}{3}x^{-3}$	$e^{\ln(x^2-x)} = e^{\ln(4x)}$
$x^{2} = bx - 8^{-3} \xrightarrow{x} (x - 4)(x - 2) = 0$	$x^2 - x = 4x$ $\rightarrow x(x^2 - 5) = 0$
$x^{2}-6x+8=0$ $x=2,4$	
7. $log_9(x-5) + log_9(x+3) = 1$	8. $log_2(x-2) + log_2(x+1) = 2$ not allowed due
$\log_{9}((x-5)(x+3)) = 1$	$\log_2((x-2)(x+1))=2$ to $\ln(x-1)$
$\log_{q}(x^{2}-2x-15)=1$	$2^{\log_2((x-z)(x+1))} = 2^2$ - J5' also not allowed due to
$q^{109}(x^2-2x-15) = q^{17}$	(x-z)(x+1) = 4 $ln(x)$
$x^{2}-2x-15=9$	$x^2 - x - 2 = 4$
$x^2 - 2x - 24$	$\chi^2 - \chi - b = 0$
(x-6)(x+4)=0	(x-3)(x+2)=0
	x=-2,3
x=-4,6	not allowed
notallowed	$\log_2(x+1)$
$\log_{q}(x-5)$	

Exit Ticket Power Rule

Power Rule $\frac{d}{dx} \left[x^n \right] = n x^{n-1}$

Use the product rule above to find the derivative of the following functions:

1. $y = x^3$ **2.** $y = 4x^2 + 5x - 6$

3.
$$y = 5x^{\frac{1}{4}} - 4x^{\frac{1}{2}} + 7$$
 4. $g(x) = \frac{1}{3}x^{-3}$

5.
$$g(x) = \frac{1}{x^5}$$
 6. $y(x) = \frac{1}{3\sqrt[3]{x}}$

7.
$$R = \frac{15x^7 + 18x^5 - 21x^4}{3x}$$

8. $L = \frac{\frac{3}{4}x^{\frac{11}{3}} + \frac{2}{5}x^{\frac{5}{3}} + \frac{5}{11}x^{\frac{2}{3}}}{x^{\frac{-8}{3}}}$

Exit Ticket Power Rule

Power Rule

$\frac{d}{dx}\left[x^{n}\right] = nx^{n-1}$

Use the product rule above to find the derivative of the following functions:

1.
$$y = x^{3}$$

 $y' = 3x^{3-1}$
 $= 3x^{2}$
2. $y = 4x^{2} + 5x - 6$
 $y' = 4 \cdot 2x^{2-1} + 5x^{1-1} - 0$
 $= 8x + 5$

3.
$$y = 5x^{\frac{1}{4}} - 4x^{\frac{1}{2}} + 7$$

 $y' = 5 \cdot \frac{1}{4} x^{\frac{1}{4} - 1} - 4 \cdot \frac{1}{2} x^{\frac{1}{2} - 1} + 0$
 $= \frac{5}{4} x^{-\frac{3}{4}} - 2 x^{-\frac{1}{2}}$
4. $g(x) = \frac{1}{3}x$
 $g'(x) = \frac{1}{3} \cdot (x)$
 $= -x$

5.
$$g(x) = \frac{1}{x^5} = x^{-5}$$

 $g'(x) = -5x^{-5}$
 $= -5x^{-6}$

4.
$$g(x) = \frac{1}{3}x^{-3}$$

 $g'(x) = \frac{1}{3} \cdot (-3) x^{-3-1}$
 $= -x^{-4}$

6.
$$y(x) = \frac{1}{3\sqrt[3]{x}} = \frac{1}{3} \times \frac{1}{3}$$

 $y' = \frac{1}{3} \cdot \left(-\frac{1}{3}\right) \times \frac{1}{3}$
 $= -\frac{1}{3} \times \frac{-\frac{1}{3}}{3}$

7.
$$R = \frac{15x^{7} + 18x^{5} - 21x^{4}}{3x} = \frac{15x^{7}}{3x} + \frac{18x^{5}}{3x} - \frac{21x^{4}}{3x}$$

$$R = 5x^{6} + 6x^{4} - 7x^{3}$$

$$R = 5x^{6} + 6x^{4} - 7x^{3}$$

$$R = 5 \cdot 6x^{6-1} + 6 \cdot 4x^{4-1} - 73x^{3-1}$$

$$= 30x^{5} + 24x^{3} - 21x^{2}$$
8.
$$L = \frac{\frac{3}{4}x^{\frac{11}{3}} + \frac{2}{5}x^{\frac{5}{3}} + \frac{5}{11}x^{\frac{2}{3}}}{x^{\frac{-8}{3}}} = x^{\frac{8}{3}}(\frac{3}{4}x^{\frac{11}{3}} + \frac{2}{5}x^{\frac{5}{3}} + \frac{5}{11}x^{\frac{2}{3}})$$

$$L = \frac{3}{4}x^{\frac{19}{3}} + \frac{2}{5}x^{\frac{13}{3}} + \frac{5}{11}x^{\frac{19}{3}}$$

$$L' = \frac{3}{4}x^{\frac{19}{3}} + \frac{2}{5}x^{\frac{13}{3}} + \frac{5}{11}x^{\frac{19}{3}}$$

Exit Ticket Quotient Rule

Quotient Rule

$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{f'(x) \cdot g(x) - g'(x) \cdot f(x)}{\left[g(x)\right]^2}$$

Use the quotient rule above to find the (fully simplified) derivative of the following functions:

1.
$$y = \frac{x}{x+1}$$
 2. $y = \frac{x^2}{3x-1}$

3.
$$y = \frac{x^3}{\sqrt{x+1}}$$
 4. $y = \frac{x^2-1}{x^2+1}$

5.
$$g(x) = \frac{\ln(x) - 1}{\ln(x) + 1}$$
 6. $g(x) = \frac{e^x - 1}{e^x + 1}$

Exit Ticket Quotient Rule

Quotient Rule

$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{f'(x) \cdot g(x) - g'(x) \cdot f(x)}{\left[g(x)\right]^2}$$

Use the quotient rule above to find the (fully simplified) derivative of the following functions:

1.
$$y = \frac{x}{x+1} \frac{f(x) = x}{g(x) = x+1}$$

 $y^{\frac{1}{2}} \frac{(1)(x+1)^{\frac{1}{2}}(1)(x)}{(x+1)^{\frac{1}{2}}}$
 $= \frac{x+1-x}{(x+1)^{\frac{1}{2}}}$
 $= \frac{1}{(x+1)^{\frac{1}{2}}}$
 $= \frac{3x^{\frac{5}{2}} + 3x^{\frac{1}{2}}}{(x^{\frac{1}{2}}+1)^{\frac{5}{2}}}$
 $= \frac{3x^{\frac{5}{2}} + 3x^{\frac{1}{2}}}{(x^{\frac{1}{2}}+1)^{\frac{5}{2}}}$
 $= \frac{3x^{\frac{5}{2}} + 3x^{\frac{1}{2}}}{(x^{\frac{1}{2}}+1)^{\frac{5}{2}}}$
 $= \frac{5x^{\frac{5}{2}} + 3x^{\frac{1}{2}}}{(x^{\frac{1}{2}}+1)^{\frac{5}{2}}}$
5. $g(x) = \frac{\ln(x)-1}{\ln(x)+1}$
 $g^{\frac{1}{2}}(x) = \frac{\frac{1}{2}(1)(\ln(x)+1) - \frac{1}{x}(\ln(x)-1)}{(\ln(x)+1)^{\frac{1}{2}}}$
 $= \frac{\frac{1}{2}(x)} + \frac{1}{x} - \frac{\ln(x)}{x} + \frac{2}{x}$
 $= \frac{\frac{1}{2}(x)}{(x^{\frac{1}{2}}+1)^{\frac{5}{2}}}$
 $= \frac{\frac{2}{x}(\frac{1}{2} - \frac{2}{x} + \frac{2}{x} - \frac{2}{x} + \frac{2}{x} + \frac{1}{x}}{(e^{x} + 1)^{\frac{5}{2}}}$
 $= \frac{\frac{2}{x}(\frac{1}{2} - \frac{2}{x} + \frac{2}{x} - \frac{1}{x} + \frac{1}{x}}{(\ln(x)+1)^{\frac{1}{2}}}$
 $= \frac{\frac{2}{x}(\ln(x)+1)^{\frac{1}{2}}}{(x^{\frac{1}{2}}+1)^{\frac{1}{2}}}$
 $= \frac{\frac{2}{x}(\ln(x)+1)^{\frac{1}{2}}}$
 $= \frac{2}{x}(\ln(x)+1)^{\frac{1}{2}}$

Exit Ticket Chain Rule

Chain Rule

$$\frac{d}{dx}\left[f(g(x))\right] = f'(g(x))g'(x)$$

Use the chain rule above to find the (fully simplified) derivative of the following functions:

1.
$$f(x) = (3x^2 - 1)^3 (4x^2 + 3)^5$$

2. $f(x) = (2x^2 - 4)^7 (2x^2 + 4)^8$

3.
$$y = \frac{(x^2 - 1)^3}{x^2 + 1}$$
 4. $g(x) = \frac{\ln(x) - 1}{\ln(x) + 1}$

5.
$$g(x) = \ln\left(\frac{e^x - 1}{e^x + 1}\right)$$
 6. $y(x) = \frac{x^9 - 1}{\sqrt{x^2 - 1}}$

Exit Ticket Chain Rule

Chain Rule

$$\frac{d}{dx}\left[f(g(x))\right] = f'(g(x))g'(x)$$

Use the chain rule above to find the (fully simplified) derivative of the following functions:

$$\begin{aligned} 1. \ f(x) &= (3x^{2} - 1)^{3}(4x^{2} + 3)^{5} \\ f^{1}(x) &= (3(2x^{2} - 4)^{7}(2x^{2} + 4)^{8} \\ f^{1}(x) &= (3(2x^{2} - 4)^{7}(2x^{2} + 4)^{8} \\ f^{1}(x) &= (3(2x^{2} - 4)^{7}(2x^{2} + 4)^{8} \\ f^{1}(x) &= (3(2x^{2} + 4)^{8}(4x^{2} + 3)^{4}(4x^{2} + 3)^{5} \\ f^{1}(x) &= (2x^{2} - 4)^{7}(2x^{2} + 4)^{8} \\ f^{1}(x) &= (2x^{2} - 4)^{9}(2x^{2} + 4)^{8}(28x(2x^{2} + 4)^{4} + 32x(2x^{2} - 4))^{7} \\ f^{1}(x) &= (2x^{2} - 4)^{9}(2x^{2} + 4)^{8}(28x(2x^{2} + 4)^{4} + 32x(2x^{2} - 4))^{7} \\ f^{1}(x) &= (2x^{2} - 4)^{9}(2x^{2} + 4)^{8}(128x(2x^{2} + 4)^{4} + 32x(2x^{2} - 4))^{7} \\ f^{1}(x) &= (2x^{2} - 4)^{9}(2x^{2} + 4)^{8}(128x(2x^{2} + 4)^{8} - 128x) \\ f^{1}(x) &= (2x^{2} - 4)^{9}(2x^{2} + 4)^{8}(128x(2x^{2} + 4)^{8} - 128x) \\ f^{1}(x) &= (2x^{2} - 4)^{9}(2x^{2} + 4)^{8}(120x^{3} - 10x) \\ f^{1}(x^{2} + 1)^{1}(x^{2} + 1)^{-2x(x^{2} - 1)^{3}} \\ f^{1}(x) &= (2x^{2} - 4)^{9}(2x^{2} + 4)^{8}(120x^{3} - 10x) \\ f^{1}(x^{2} + 1)^{1}(x^{2} + 1)^{-2x(x^{2} - 1)^{3}} \\ f^{1}(x) &= (2x^{2} - 4)^{9}(2x^{2} + 4)^{8}(120x^{3} - 10x) \\ f^{1}(x^{2} + 1)^{1}(x^{2} + 1)^{-2x(x^{2} - 1)^{3}} \\ f^{1}(x^{2} + 1)^{1}(x^{2} + 1)^{-2x(x^{2} - 1)^{3}} \\ f^{1}(x^{2} + 1)^{1}(x^{2} + 1)^{-2x(x^{2} - 1)^{3}} \\ f^{1}(x) &= (2x^{2} - 4)^{1}(12x^{2} + 1)^{-2x(x^{2} - 1)^{3}} \\ f^{1}(x) &= (2x^{2} - 4)^{1}(12x^{2} + 1)^{1}(12x^{2} + 1)^{1}(12x^{2} + 1)^{2} \\ f^{1}(x) &= (2x^{2} - 4)^{1}(12x^{2} + 1)^{2} \\ f^{1}(x) &= (2x^{2} - 4)^{1}(12x^{2}$$

Exit Ticket Second Derivative Test

Second Derivative Test

Suppose f(x) has a critical point (f'(x) = 0 or DNE) at x = c. We classify the critical points as follows:

- if f''(c) is positive (concave up), then f(c) is a **local minimum**
- if f''(c) is negative (concave down), then f(c) is a **local maximum**
- if f''(x) = 0, then we must use the first derivative test.

Use the second derivative test to solve the following problems:

1. What is the maximum product of two positive numbers whose sum is 100?

2. We have \$500 to build a fence around a rectangular field where the sides are made of different material. The vertical fencing cost 10/ft, the bottom fencing is 2/ft, and the top fencing is 5/ft. What is the maximum area we can enclose?

3. A company's sale price is a linear function of their monthly demand. When they charge \$60 a piece they sale 100 pieces and when they charge \$50 a piece they sale 200 pieces. Their monthly cost is \$5000 fixed cost and \$10 per piece produced. What is their maximum monthly profit?

Exit Ticket Second Derivative Test

Second Derivative Test

Suppose f(x) has a critical point (f'(x) = 0 or DNE) at x = c. We classify the critical points as follows:

- if f''(c) is positive (concave up), then f(c) is a **local minimum**
- if f''(c) is negative (concave down), then f(c) is a **local maximum**
- if f''(x) = 0, then we must use the first derivative test.

Use the second derivative test to solve the following problems:

1. What is the maximum product of two positive numbers whose sum is 100?

Criven:
$$x+y=100 \longrightarrow y=100 - x$$

 $P=x\cdot y$
 $P=x(100 - x)$
 $P=100 - 2x = 0$
 $P(50) = 100(50) - (50)^{2}$
 $P(50) = 100(50) - (50)^{2}$

2. We have \$500 to build a fence around a rectangular field where the sides are made of different material. The vertical fencing cost $\frac{10}{ft}$, the bottom fencing is $\frac{2}{ft}$, and the top fencing is $\frac{5}{ft}$. What is the maximum area we can enclose?

3. A company's sale price is a linear function of their monthly demand. When they charge \$60 a piece they sale 100 pieces and when they charge \$50 a piece they sale 200 pieces. Their monthly cost is \$5000 fixed cost and \$10 per piece produced. What is their maximum monthly profit?

point-slope form:
$$m = \frac{50 - 60}{200 - 100} = \frac{-10}{100} = -\frac{1}{10}$$
 $C(x) = 10x + 5000$ $P'(x) = -\frac{1}{5}x + 60 = 0$ $Y - 50 = -\frac{1}{10}(x - 200)$ $P(x) = R(x) - C(x)$ $GO = \frac{1}{5}x$ $s(x) = -\frac{1}{10}x + 70$ $= -\frac{1}{10}x^2 + 70x - (10x + 500)$ $300 = x$ $R(x) = x \cdot S(x)$ $= -\frac{1}{10}x^2 + 60x - 500$ $P(300) = -\frac{1}{10}(300)^2 + 60(300) - 500$ $= -\frac{1}{10}x^2 + 70x$ $= -9000 + 18,000 - 500$ $= -\frac{1}{10}x^2 + 70x$ $= 8,500$

Exit Ticket L'Hopital

L'Hopital If both f(x) and g(x) are differentiable functions such that:

•
$$\lim_{x \to c} f(x) = 0 = \lim_{x \to c} g(x) \text{ such that } \lim_{x \to c} \frac{f'(x)}{g'(x)} \text{ exists then } \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$$

•
$$\lim_{x \to c} f(x) = \infty = \lim_{x \to c} g(x) \text{ such that } \lim_{x \to c} \frac{f'(x)}{g'(x)} \text{ exists then } \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$$

Identify when you can use L'Hopital. If you can, evaluate the limit:

1.
$$\lim_{x \to \infty} \frac{3x^3 + 4x^2 - 3x + 5}{5x^4 + 3x^2 - 1}$$
2.
$$\lim_{x \to 0^+} \frac{\ln(x+1)}{\sqrt{x}}$$

3.
$$\lim_{x \to \infty} \frac{-6e^{2x} + 7}{3x^{2x} + 5}$$
4.
$$\lim_{x \to \infty} \frac{e^{2x} + 2e^x + 1}{e^x + 1}$$

5.
$$\lim_{x \to 0} \frac{\sin(x) - \sin(2x)}{\sin(x) + \sin(3x)}$$
 6. $\lim_{x \to \infty} (1+x)^{\frac{1}{x}}$

. (2

Exit Ticket L'Hopital

L'Hopital If both f(x) and g(x) are differentiable functions such that:

•
$$\lim_{x \to c} f(x) = 0 = \lim_{x \to c} g(x) \text{ such that } \lim_{x \to c} \frac{f'(x)}{g'(x)} \text{ exists then } \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$$

•
$$\lim_{x \to c} f(x) = \infty = \lim_{x \to c} g(x) \text{ such that } \lim_{x \to c} \frac{f'(x)}{g'(x)} \text{ exists then } \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$$

Identify when you can use L'Hopital. If you can, evaluate the limit:

1.
$$\lim_{x \to \infty} \frac{3x^3 + 4x^2 - 3x + 5}{5x^4 + 3x^2 - 1} \overset{0}{\underset{x \to 0^+}{\longrightarrow}}$$
2.
$$\lim_{x \to 0^+} \frac{\ln(x+1)}{\sqrt{x}} \overset{0}{\underset{x \to 0^+}{\longrightarrow}}$$

$$= \lim_{x \to 0^+} \frac{\frac{1}{12} x^{-1/2}}{\frac{1}{12} x^{-1/2}} = \lim_{x \to 0^+} \frac{1}{\frac{1}{12} x^{-1/2}} = 0$$

3.
$$\lim_{x \to \infty} \frac{-6e^{2x} + 7}{3x^{2x} + 5} \quad \textcircled{0}$$

$$= \lim_{x \to \infty} \frac{-12e^{2x}}{6e^{2x}}$$

Exit Ticket Curve Sketching

Find everything you need to graph the function: $f(x) = e^{3x} - e^{5x}$

Exit Ticket Curve Sketching

 \rightarrow end behavior: $\lim_{x \rightarrow \pm \infty} f(x)$

Find everything you need to graph the function: $f(x) = e^{3x} - e^{5x}$

Step 1: Intercepts

$$0 = e^{3x} = e^{5x} \qquad y = e^{3(0)} = e^{5(0)}$$

$$e^{5x} = e^{5x} \qquad y = e^{0} - e^{0}$$

$$\ln(e^{5x}) = \ln(e^{5x}) \qquad z = 1 - 1$$

$$5x = 3x \qquad z = 0$$

$$2x = 0$$

$$x = 0$$

$$2x = 0$$

$$x = 0$$

$$x = 0$$

$$5tep 2: y' - sign line$$

$$f'(x) = 3e^{3x} - 5e^{5x} = 0$$

$$3e^{3x} = 5e^{5x}$$

$$\ln(3e^{3x}) = \ln(5e^{5x})$$

$$\ln(3e^{5x}) = \ln(5e^{5x})$$

$$\ln(3e^{5x}) = \ln(5e^{5x})$$

$$\ln(3e^{5x}) = \ln(5e^{5x})$$

$$\ln(3e^{5x}) = \ln(5e^{5x})$$

Produced by Audriana Houtz, Mathematics Ph.D. student at the University of Notre Dame.

- 00

Exit Ticket Extrema

First Derivative Test Suppose f(x) has a critical point at x = c. We classify the critical points as follows:

- if f'(x) changes its sign from positive to negative at x = c, then there is a local maximum at x = c.
- if f'(x) changes its sign from negative to positive at x = c, then there is a local minimum at x = c.
- if f'(x) does not change its sign at x = c, then there is neither a local minimum or maximum at x = c.

Second Derivative Test Let f(x) be a function such that f'(c) = 0 and the function has a second derivative in an interval containing c. We can classify the critical point as follows:

- if f''(c) > 0 then f has a local minimum at the point (c, f(c)).
- if f''(c) < 0 then f has a local maximum at the point (c, f(c)).
- if f''(c) = 0 then the test is inconclusive

What can you tell me about the following functions (increasing, decreasing, maximums, minimums):

1.
$$f(x) = \frac{1}{3}x^3 - 3x^2 + 5x$$
 2. $f(t) = t - 3(t-1)^{\frac{1}{3}}$

3.
$$h'(x) = \frac{e^{3x} - 1}{e^{5x} + 1}$$
 4. $f'(x) = e^{4x} - e^{2x} - 2$

5.
$$f'(0) = 0$$
; $f''(x) = 6x + 1$
6. $f'(1) = 0$; $g''(t) = -2e^{-t} + te^{-t}$

Exit Ticket Extrema

First Derivative Test Suppose f(x) has a critical point at x = c. We classify the critical points as follows:

- if f'(x) changes its sign from positive to negative at x = c, then there is a local maximum at x = c.
- if f'(x) changes its sign from negative to positive at x = c, then there is a local minimum at x = c.
- if f'(x) does not change its sign at x = c, then there is neither a local minimum or maximum at x = c.

Second Derivative Test Let f(x) be a function such that f'(c) = 0 and the function has a second derivative in an interval containing c. We can classify the critical point as follows:

- if f''(c) > 0 then f has a local minimum at the point (c, f(c)).
- if f''(c) < 0 then f has a local maximum at the point (c, f(c)).
- if f''(c) = 0 then the test is inconclusive

What can you tell me about the following functions (increasing, decreasing, maximums, minimums):

1.
$$f(x) = \frac{1}{3}x^3 - 3x^2 + 5x$$

 $f'(x) = \frac{1}{3}x^2 - (6x + 5 = 0)$
 $(x-5)(x-1) = 0$
 $\frac{1}{1} - \frac{1}{5}$
mox min
3. $h'(x) = \frac{e^{3x} - 1}{e^{5x} + 1}$
 $e^{3x} - 1 = 0$
 $\frac{-\frac{1}{6}}{6} - \frac{1}{6}$
 $e^{3x} - 1 = 0$
 $\frac{-\frac{1}{6}}{6} - \frac{1}{6}$
 $\frac{1}{6} - \frac{1}{6} - \frac{1}{6}$
 $\frac{1}{6} - \frac{1}{6} - \frac{1}{6} - \frac{1}{6} - \frac{1}{6}$
 $\frac{1}{6} - \frac{1}{6} - \frac{1}{6} - \frac{1}{6} - \frac{1}{6}$
 $\frac{1}{6} - \frac{1}{6} - \frac{1}{6$

Exit Ticket Concavity

Concavity Let f(x) be a twice differentiable function with f''(c) = 0 or DNE (i.e. c is a *possible* inflection point). We say that:

- f(x) concave up on an interval I = (a, b) if f''(x) > 0 for all x such that a < x < b
- f(x) concave down on an interval I = (a, b) if f''(x) < 0 for all x such that a < x < b
- c is an inflection point if the function is continuous at the point and the concavity changes at that point

Identify when the function is concave up and concave down:

1. $f(x) = 3x^5 - 5x^3 + 3$ **2.** $f(t) = 3(t-1)^{\frac{1}{3}}$

3.
$$h(x) = \frac{9}{3}x^{\frac{4}{3}} - \frac{1}{6}x^3 + 3$$
 4. $g(t) = te^{-t}$

5. $f''(x) = \ln(3x) - \ln(5)$ **6.** $f'(x) = e^{4x} - e^{2x} - 2$

Exit Ticket Concavity

Concavity Let f(x) be a twice differentiable function with f''(c) = 0 or DNE (i.e. c is a *possible* inflection point). We say that:

- f(x) concave up on an interval I = (a, b) if f''(x) > 0 for all x such that a < x < b
- f(x) concave down on an interval I = (a, b) if f''(x) < 0 for all x such that a < x < b
- $\bullet\ c$ is an inflection point if the function is continuous at the point and the concavity changes at that point

Identify when the function is concave up and concave down:

1.
$$f(x) = 3x^{5} - 5x^{3} + 3$$

2. $f(x) = 15x^{4} - 15x^{2}$
 $f^{1}(x) = 160x^{5} - 30x = 0$
 $30x(x^{2} - 1) = 0$
 $\frac{-}{down^{-1}} \frac{+}{up} \frac{-}{down^{-1}} \frac{+}{up}$
 $\frac{-}{down^{-1}} \frac{+}{up} \frac{-}{down^{-1}} \frac{+}{up} \frac{-}{down^{-1}} \frac{-}{up} \frac{+}{down^{-1}} \frac{-}{up} \frac{-}{down^{-1}} \frac{-}{up} \frac{+}{down^{-1}} \frac{-}{up} \frac{-}{down^{-1}} \frac{-}{up} \frac{-}{up} \frac{-}{up} \frac{-}{up} \frac{-}{down^{-1}} \frac{-}{up} \frac{-}{u$

Exit Ticket Newton's Method

Newton's Method

If x_n is an approximation of a solution of f(x) = 0 and if $f'(x) \neq 0$ the next approximation is given by,

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Find the function you can apply Newton's method to:

1.
$$x^2 = cos(x)$$
 2. $2 - x^2 = sin(x)$

Find an initial guess and write the equation for x_1 using Newton's method:

1.
$$f(x) = x^3 - 7x^2 + 8x - 1$$

2. $f(x) = x^3 - x^2 - 15x + 1$

Use Newton's method and the initial guess given to find x_2 :

1.
$$f(x) = -x^3 + 4$$
; $x_0 = 1$
2. $f(x) = \cos(x) - 2x$; $x_0 = 0$

Exit Ticket Newton's Method

Newton's Method

If x_n is an approximation of a solution of f(x) = 0 and if $f'(x) \neq 0$ the next approximation is given by,

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Find the function you can apply Newton's method to:

1.
$$x^2 = cos(x)$$
 2. $2 - x^2 = sin(x)$
 $f(x) = x^2 - cos(x)$
 $f(x) = 2 - x^2 - sin(x)$
 $f(x) = cos(x) - x^2$
 $f(x) = sin(x) - 2 + x^2$

Find an initial guess and write the equation for x_1 using Newton's method:

1. $f(x) = x^3 - 7x^2 + 8x - 1$ f(o) = -1 f(1) = 1 - 7 + 8 - 1 = 1 $x_0 = \frac{1}{2}$ $x_1 = \frac{1}{2} - \frac{(1/2)^3 - 7(1/2)^2 + 8(1/2) - 1}{3(1/2)^2 - 14(1/2) + 8}$ 2. $f(x) = x^3 - x^2 - 15x + 1$ f(o) = 1 f(1) = 1 - 1 - 15 + 1 = -14 $x_0 = \frac{1}{2}$ or $\frac{1}{3}$ $x_1 = \frac{1}{2} - \frac{(1/2)^3 - 7(1/2)^2 + 8(1/2) - 1}{3(1/2)^2 - 14(1/2) + 8}$ 2. $f(x) = x^3 - x^2 - 15x + 1$ f(o) = 1 f(1) = 1 - 1 - 15 + 1 = -14 $x_0 = \frac{1}{2}$ or $\frac{1}{3}$ $x_1 = \frac{1}{2} - \frac{(1/2)^3 - (1/2)^2 - 15(1/2) + 1}{3(1/2)^2 - 2(1/2) - 15}$

Use Newton's method and the initial guess given to find x_2 :

1.
$$f(x) = -x^{3} + 4$$
; $x_{0} = 1$
 $f'(x) = -3x^{2}$
 $x_{1} = 1 - \frac{-(1)^{3} + 4}{-3(1)^{2}}$
 $= 1 - \frac{3}{-5} = 2$
 $x_{2} = 2 - \frac{-(2)^{3} + 4}{-3(2)^{2}}$
 $= 2 - \frac{-4}{-12}$
 $= 2 + \frac{1}{3}$
 $= \frac{7}{13}$
2. $f(x) = \cos(x) - 2x$; $x_{0} = 0$
 $f'(x) = -\sin(x) - 2$
 $x_{1} = 0 - \frac{\cos(0) - 2(0)}{-\sin(0) - 2}$
 $= 0 - \frac{1 - 2}{-2}$
 $= \frac{1}{2}$
 $x_{2} = \frac{1}{2} - \frac{\cos(1/2) - 2(1/2)}{-\sin(1/2) - 2}$
 $= \frac{1}{2} + \frac{\cos(1/2) - 1}{\sin(1/2) - 2}$

Exit Ticket Anti-derivatives

Fill in the derivatives and anti-derivatives: **2.** $\int k dx =$ 1. $\frac{d}{dx}[kx] =$ 4. $\int x^n dx =$ **3.** $\frac{d}{dx}[kx^n] =$ 6. $\int \frac{1}{x} dx =$ 5. $\frac{d}{dx} \left[\ln(x) \right] =$ 8. $\int \frac{1}{x \cdot \ln(a)} dx =$ 7. $\frac{d}{dx} \left[\log_a(x) \right] =$ $\mathbf{10.} \int e^x dx =$ 9. $\frac{d}{dx}[e^x] =$ 12. $\int a^x dx =$ 11. $\frac{d}{dx}[a^x] =$ 14. $\int \cos(x) dx =$ 13. $\frac{d}{dx} [\sin(x)] =$ **16.** $\int \sin(x) dx =$ $\mathbf{15.} \frac{d}{dx} \left[\cos(x) \right] =$ $\mathbf{18.} \int \sec^2(x) dx =$ $\mathbf{17.} \frac{d}{dx} \left[\tan(x) \right] =$ $\mathbf{20.} \int \sec(x) \cos(x) dx =$ 19. $\frac{d}{dx}[\sec(x)] =$

Use the rules above to find the integrals below and check your answer:

1.
$$\int 3^x - 3x^4 - \cos(x) dx$$
 2. $\int \frac{x^3 - e^2}{x^2} dx$

3.
$$\int \frac{1}{\sqrt{1-x}} dx$$
 4. $\int 6x(x^2+1)^2 dx$

Exit Ticket Anti-derivatives

Fill in the derivatives and anti-derivatives: 2. $\int k dx = \mathbf{K} \mathbf{x} \mathbf{+} \mathbf{C}$ 1. $\frac{d}{dx}[kx] = \mathbf{k}$ 4. $\int x^n dx = \frac{1}{n+1} X^{n+1} + C$ 3. $\frac{d}{dx}[kx^n] = \mathbf{k} \cdot \mathbf{n} \cdot \mathbf{x}^{\mathbf{n}-\mathbf{l}}$ 6. $\int \frac{1}{x} dx = \ln |\mathbf{x}| + C$ 5. $\frac{d}{dx} \left[\ln(x) \right] = \frac{1}{\mathbf{x}}$ 7. $\frac{d}{dx} \left[\log_a(x) \right] = \frac{1}{\mathbf{x} \cdot \ln(\mathbf{a})}$ 8. $\int \frac{1}{x \cdot \ln(a)} dx = \log(x) + C$ 10. $\int e^x dx = \mathbf{e}^{\mathbf{x}} \mathbf{+} \mathbf{C}$ 9. $\frac{d}{dx}[e^x] = e^x$ $12. \int a^x dx = \frac{1}{\ln |a|} \cdot a^x + C$ 11. $\frac{d}{dx}\left[a^{x}\right]=a^{x}\ln(a)$ 14. $\int \cos(x) dx = \sin(x) + C$ $13. \frac{d}{dx} \left[\sin(x) \right] = \operatorname{costx}$ $16. \int \sin(x) dx = -\cos(x) + C$ $15.\frac{d}{dx}\left[\cos(x)\right] = -\sin(x)$ $\mathbf{18.} \int \sec^2(x) dx = \mathbf{1an(x) + c}$ $17. \frac{d}{dx} \left[\tan(x) \right] = \operatorname{Sec}^{\mathbf{Z}}(\mathbf{x})$ 19. $\frac{d}{dx}[\sec(x)] = \sec(x)\tan(x)$ $20.\int \sec(x)\cos(x)dx = \sec(x) + C$

Use the rules above to find the integrals below and check your answer:

1.
$$\int 3^{x} - 3x^{4} - \cos(x)dx$$

 $= \frac{1}{\ln 13} \cdot 3^{x} - \frac{3}{5}x^{5} - \sin(x) + c$
 $check: 3^{x} - 3x^{4} - \cos(x)$
3. $\int \frac{1}{\sqrt{1 - x}}dx = \int (1 - x)^{-1/2}dx$
 1^{st} guess: $(1 - x)^{-1/2}$
 2^{nd} guess: $2(1 - x)^{-1/2}$