Exit Ticket Log and Exponential Rules Practice

Fill in the following rules:

1. In(a) + In(b) = 2. In(a) — In(b) =
3. In(z%) = 4. In(az’) =

5. e = 6. In(e®) =

7. et eb = 8. eb =

Use the above rules to solve the following equations for x:

1. 4 =In(2?) 2. 8 =In(z)°

3. 2 =In((ze)?) 4. 2 = In(ze?)

5. 6 = In(ex?) 6. 6 =1In(2e")

7. &3 —edrtl = 8. 3e3 —5e% =)
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Exit Ticket Log and Exponential Rules Practice

Fill in the following rules:
In(a) - In(8) = In (%)

1. In(a) + In(b) = In(a-b) 2.

3. In(z%) = a-In(x) 4. In(az’) =nla)+ b Inlx)
5. (@ — x 6. In(e”) = x-Inle)=x

7. ea-eb=e°+b 8. eb =b[ 8"

Use the above rules to solve the following equations for x:

1. 4 =1In(z?) 2. 8 =In(z)*
H=Z:nl)  n(x*)=a-Inlx) 18" =iy’
2=In(x) 2 =n(x)
6= eln (x) e (x) x el= e'\v\ (x) e\n(x)_ y
=X e = X
3. 2 =In((ze)?) 4. 2 = In(ze?)
2=2Inlxe) Inx®) =0 n(x) 2= Inlx)+ \nle") Inlo-v)= i)+ n (b)
1=1n(xe) 7= InboO+ 2inle) Wlx*) = a-Inlx)
1=t Inle)  Inlabr=inla) +Inlb) 2=Inlxy+2 nie)=1
L=+l (nledd 0= Inlx)
O=nlxy — €=¢ e‘n\x)z X e°= e\n\%) — 1:=X e\“qu X
5. 6 = In(ex?) 1=X 6. 6 =1n(2e")
b= ‘ﬂ(ﬁ\'\'\“(xz) \n(&b\ zInla) ¢+ \Y\lb) b= \ﬂ(Z)‘\’ \n(e") \V\ lab\ = \ﬂla) Y ‘Y\ lb\
L=1+ M)  nle)=1 bzinl)+ XN In(x*)=a-Wnix)
b=1¥2Zinl) i (xM)=0r i) L=+ X \nie)=d
5:=2 Inlx) .
5oy ——et= "™ gata b-Inl2)= X
7w o0 iy 8. 3¢ — 5 = ()
e3)(= esx*‘ séx: 565)(
inié*)=Inl€™*) In(36*)- lal5e™)
3xnle)= (5x)INle)  \n(xM)=a-Inlx) N2+ nle*)= W)+ W(€?) Inlo-b)= Inley+ Inlo)
o ?.“\ e 2yt 3x )= InB)+5x Inle) nlx™)=0- Inlx)
o -_ . MEH3x =NE)+5x  nle)=1 .
X="7 Nz)-N5)=2x  \nla)-Mnlb) = (%)
Wn(#)=2x
$inl3)=x
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Exit Ticket Log and Exponential Rules Practice

Fill in the following rules:

1. In(a) + In(b) = 2. In(a) — In(b) =
3. In(z%) = 4. In(az’) =

5. ¢¥-el = 6. et =

7. @ = 8. In(e*) =

Use the above rules to solve the following equations for x:

1. In(z? +2x+1)=38 2. In(z?+ 2z +1) =In(z?) + 1
3. 3e3 — He % =0 4. 3e3® —5e% =)

5. 2In(x) = In(2) + In(3z — 4) 6. In(z) + In(z — 1) = In(4x)

7. logg(x —5) + logy(z +3) =1 8. loga(x — 2) + loga(x + 1) =2
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Exit Ticket Log and Exponential Rules Practice

Fill in the following rules:
1. In(a) + In(d) =In(a-b)

3. In(z*) =0-In(x)
5. ¢t el =e°+b
7. @ = X

In(a) — In(b) = n (&)
In(az®) Hnla)+ b-In(x)
et =&

In(e?) =X-Inle) = x

pe o s

Use the above rules to solve the following equations for x:

1. In(z? +2x+1) =38

Inlixefy=8 (i) = b +1 - Zin(5) =1
2inlx+)=8 n{ xy) -nlx) = n( 5= L
nlx+1) = 4 o (252 - 1 U Z%
e"“”“: e: %+ 4;
Xtize XNy = =€
x:e“-l \V\“ =) )-1 X’:" xez quadra'l'lc
3. 3¢° 5e—5w =0 4. 3¢% — 5eP = () formula
3 =5 3¢ 5%
Inlze)=Inf>¢>) In(36%)- Inl5€™)
In(3)+3x = Inl5) -Hx W3)r3x% =n(5) +5x
8x=Inl%) Ini3)-Inl5)=2x
x=§ nl3) Wn&)2x ——— $inld)=x
5. 2In(x) = In(2) + In(3z — 4) 6. In(z) + In(x — 1) = In(4x)
In(¥)= In(23%-4Y) Inlx (x-1Y = Inl4x)
L) = Inlox-8) In( $2-x)= nlUx)
e‘“ LY _ e)“‘“;'s) e\nlx’- x): e\n (ux) (be5) =0
x*=lbx-8 (x- “'\lx'ﬂ =0 % X = Ux x*-5)=
X-lox +8 = OJ x-5x =0 =ON5
7. logyg(z — 5) + loge(x + 3) = 1 8. logs(x —2) +loge(x +1) =2 noi'?a\\owed due
logall%8)xt3)) =1 logyz ((x-2)x01))=2 o n(x-1)
x-2x -15)=1 Ax-Dlxwyy 2 - J5" also not
‘o?q(kxt_z:-lS) ‘ oo, 5 alowed due +o
q'3 =97 (x-2)(xa0)= 4 ntx)
-2 -1529 :'-x-lz.zg
¥-2x-24 rex e
-3)(x+2)=0
(x-L)x+4)=0 (;z-zgs
- “q. LD ’ ed
no’c’a\\o wed '{°\' a:\o::)
V099 (x-5) 032t

2. In(z? +22+1) =In(2?) + 1
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Exit Ticket Power Rule

Power Rule

Use the product rule above to find the derivative of the following functions:

Loy=a’ 2. y=422+ 5z —6

3. y=>5x1 —4x2 +7 4. g(x) = 1o~

5. 9(x) = 35 6. y(z) = 337

7. R — 15m7+1§£5—2lm4 8. I — %xl?l + ia;i + %xg
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Exit Ticket Power Rule

Power Rule p
dx

"] = na" !

Use the product rule above to find the derivative of the following functions:

2. y=42>+52 -6

1. y=2a3
-\ -1 -1
\|'=':’>x3z N'=427 5% -0
3. y=>5x1 —4x3 +7 4. g(x) = 527°
_ L 2"-‘.‘ ‘- 3.‘ \ _3_‘
N=5 :4); -Y4-3%*7 %0 o101 = % (-3) X
- )
-L—'-xq-zxz :_Xq
.5 L
5. g(x) = 5= % 6 y(:z:):?)?lﬁ:%x?*
-5-1 '
'(x)= -5 % \ 1y, 3-0
3 -l’ \{':'3 "ssx
"'5)( . Y
:-ax3
3 9 u 5 2
7 5 4 \ | é 3 3 2 3 5 3 & v é
€T 3
. 4 > 19
= rlox - X 9 13 19
R 5% +lo L:%x:"-\-%x +%x3
-1 Y-\ . -l
R=5bx Ho X T-F 3 L34 29,23 51 s2 B
61U 2-214 L=g'3%x ¥g'3 %X +y3X
=2Px +24x -4x 3‘37:233919%
TR SEATS Sl S TR
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Exit Ticket Quotient Rule

Quotient Rule

Use the quotient rule above to find the (fully simplified) derivative of the following functions:

1. y=5 2. Y=3,3
_ _z?-1
3°y—\/5+1 4.y—362Jrl
n —1 et —
5 g(f]f) = n(:ﬂ§+1 6. g(ﬂ?) ez—l-}
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Exit Ticket Quotient Rule

Quotient Rule

Use the quotient rule above to find the (fully simplified) derivative of the following functions:

z El=X 2
]" y = $_+1 g(x).-. X¥l 2. y = vy
1 WL - ) (X 1 L1 - B
x+)? \ 3x-"
X=X _b-2x 3%
Tyt (3x-1°
__ _3f-2x
= lyet) S
-X=\
x4\
3.y = Jim 4 y=5
] 3
@ e -13x 2)(%) ‘= \7-%“\(1*'\\: 12x) (3-1)
- (Xt ) xt 1y
$ N - zi y2x =28 +2x
3433 x& T Ly
ToldEny _
$ , T L)
284340
Sy
5. g(x) = 2 6. g(z) =51
L \
ey o UL+ - % Linlx)-1) T -t (e*-)
9 ) (ntx)ay 9 (x)= Le*+1)?
2x 2x
I+ lex+y
2
I S . 2L _
T mtxieyt (X}
c —2
T Xl
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Exit Ticket Chain Rule

Chain Rule

Use the chain rule above to find the (fully simplified) derivative of the following functions:

1. f(z) = (32% —1)3(42* + 3)° 2. f(z) = (222 — 4)7(22% + 4)®
22-1)3 _

3 y= (z2+11) 4. g(l’) - }ng:v;Jri

5. g(x) =1In (Zzﬁ) 6. y(z) = x;__ll

Produced by Audriana Houtz, Mathematics Ph.D. student at the University of Notre Dame.



Exit Ticket Chain Rule

Chain Rule p
/ /
- [flg(@))] = fg(z))g'(2)
T
Use the chain rule above to find the (fully simplified) derivative of the following functions:
1. f(z)=(322-1)3 (4x2+3)55 2. f(x) = (222 — 4)7(222 + 4)3
Fi0= 3315 (x) (Ux®+3) Flo= Fodd 4}l (244 Y
5 +3) (8 (3¢ 1Y + Bl uf (4x) (24"
= (uy+3Y 3% Y (18x (Ut +3) + 4Ox(3%™1) = (22-u Y (22 +H) ? ( 28 x (25 +u)4 32x(2x"- 1))
= (yx43) (3o-1Y° (724 S4x +1205>- tox ) = 2xt-u)y? (253 +4)° (Sl O+ N2y + L~ 128x)
= (a3 (351)° (142 41 =(22-4)* (22 +4) (12043 - o)
3.y =t . 4. glr) = B
L 303 129 () - 2x (K1) - 2Unb0w -3 linbar-1)
N= : (xte1y? - 3‘“‘ (mxyHy?
Lox (KPS 1P 1) - 25 (1Y L Lo tinloyst
= eny =%’?—)2
- (2 1) {x(x21) - 2%(x%-1)) :
(x*+1)? = ==
L0 (1 18 (\nlx:l\
= (Eny = W
5. g(z) =In (55) 6. y(o) = = ‘ '
g=Inle™n- nlg'+) 0= aB0 1Y - FUR 1Y Py 1)
. e* ix (lx”-ﬂ'"\z
X)< T - [ o U
3( e*-1 SIY ) q,(s(xz_l)lz_ lx'-l)"‘(x”—x) . \x‘*‘\"’
_efign) —e* (e 1) (- 1) -0
(e*-(e* )
2%, x T X Q!_S‘xz-li- lg"’-x)
L4 e -
= (e*1) (e*h) (x?-1y¥2
I ull 9x"°-9x8_ 04 x
T le-nletH) = (x2-1y"/2
8x°_q ;8 £X
= Lxl_l)'&ll
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Exit Ticket Second Derivative Test

Second Derivative Test

Suppose f(z) has a critical point (f'(x) = 0 or DNE) at z = ¢. We classify the critical points
as follows:

e if f”(c) is positive (concave up), then f(c) is a local minimum
e if f”(c) is negative (concave down), then f(c) is a local maximum

e if f”(x) =0, then we must use the first derivative test.

Use the second derivative test to solve the following problems:

1. What is the maximum product of two positive numbers whose sum is 1007

2. We have $500 to build a fence around a rectangular field where the sides are made of different
material. The vertical fencing cost $10/ft, the bottom fencing is $2/ft, and the top fencing
is $5/ft. What is the maximum area we can enclose?

3. A company’s sale price is a linear function of their monthly demand. When they charge $60
a piece they sale 100 pieces and when they charge $50 a piece they sale 200 pieces. Their

monthly cost is $5000 fixed cost and $10 per piece produced. What is their maximum monthly
profit?
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Exit Ticket Second Derivative Test

Second Derivative Test
Suppose f(x) has a critical point (f'(x) = 0 or DNE) at 2 = ¢. We classify the critical points
as follows:

e if f”(c) is positive (concave up), then f(c) is a local minimum
e if f”(c) is negative (concave down), then f(c) is a local maximum

e if f”(x) =0, then we must use the first derivative test.

Use the second derivative test to solve the following problems:

1. What is the maximum product of two positive numbers whose sum is 1007

Chiven: X4\ =100 —> = 100 -x P'=100-2x =0 P(s0) = 100150) - (50)"
P xY P= x(\OO-X) \00 =2x :5000_25w
- - z =
=\00%x ~X 80=X - 2600

2. We have $500 to build a fence around a rectangular field where the sides are made of different
material. The vertical fencing cost $10/ft, the bottom fencing is $2/ft, and the top fencing
is $5/ ft. What is the maximum area we can enclose?

‘ Given: 10N +5x + 10y ¥2x =500 A'=25-5x =0 Al&2)= 5(%2)- zol"ﬁo
t\o\l 204+ Fx = 500 25,-_‘0,( =25(zgg)-z.&'.372

| oty VS0 20 _, T
A= x(2257=) y= 500 °4x * =25(%2)- 28 . 22
= -}- _ 25

R 7 (3)-2%)

3. A company’s sale price is a linear function of their monthly demand. When they charge $60
a piece they sale 100 pieces and when they charge $50 a piece they sale 200 pieces. Their
monthly cost is $5000 fixed cost and $10 per piece produced. What is their maximum monthly

profit?

?°°"‘: o‘f”: "‘°:"|": ' C(x)= 10x + 5000 P10 = -—é—x 160 =0

M= 200106 = 100 -~ " 10 = X

Pl R - - C(x) LO= 5

\-50 =-$(x -200) . "5%1"’7'0" _ \\D'x .\.500) 300=X

S0:-5x + 70 - 15 +Ox ~500 L (200} +L01200) - 500

RX) = x-SLX) ? ' Plaoo)=-ie e
=¥ (-‘ox } %0) :-4,000*\"8,000'500
-'-""—X 4+ FOX :8,5%
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Exit Ticket L'Hopital

L’Hopital If both f(x) and g(x) are differentiable functions such that:

!/ /
e lim f(z) = 0 = lim g(z) such that lim f() exists then lim f(@) = lim f(@)
T T z—c g (aj) T g(m) T—C g’(:p)
!/ !/
e lim f(x) = co = lim g(z) such that lim f(z) exists then lim o) = lim fz)
T T T—C g’(gj) T—c g(:p) T g’(:p)

Identify when you can use L’Hopital. If you can, evaluate the limit:

. 323 +42* —3x+5 . In(z+1)
1. lim 2. lim ————=
T—00 5%+ 322 —1 z—0t \/E
_ R 2T 2z 2% 1
3 i —0¢ 7 4. fim T2
T—r00 31:21 + 5 T—00 er + 1
. ~ sin(2
5. lim S0(®) = sin(2) 6. lim(1+ )%
20 sin(x) + sin(3z) z—00

Produced by Audriana Houtz, Mathematics Ph.D. student at the University of Notre Dame.



Exit Ticket L'Hopital

L’Hopital If both f(z) and g(z) are differentiable functions such that:

e lim f(x) =0 = lim g(x) such that lim f'(z) exists then lim @ T f'(z)

T T a—c g (x) T g(m) x—Ig g’(x)
(

/ /
e lim f(x) = co = lim g(z) such that lim f(z) exists then lim fa) = lim fz)
T—e T—e z—c g’(gj) Tz—c g(x) T—e ’(x)

Identify when you can use L’Hopital. If you can, evaluate the limit:

313 + 4 3 5 ) 1
1. lim x—|—4x 295—1— ao 2. limn(x—-i_) .Q.
z—oo  drt 4372 —1 ) =0t /T o)
L'H x3 a -
lim e = lim, o
= lim Tlg— =0 : x‘-m $x" w0
g0 120% i x-l'g- " L-ao
i F s
—6e% 47 20 4 9¢7 4 ]
3. lim Tl R 4 Ny T2t
r—oo 312 4+ 5 w T—00 et +1
L3
-12et u=e
=lim L*e‘" ‘ S < km Lut0) D
xP = |m utl b (y#l)
=lim -2
lin, = lim €¥1
A»P
=-2 N

5 lim sin(z) —sin(2r) -0

6-=.0 6. lim(1+2)% @
20 sin(z) +sin(3z) -0 ~ 0 =00 ey
= iy -SoS)-2cos(2x) B} \‘ e Lix
= W03 costxy-3cosTEn
il =
_1-zw =\‘§n9°e ' e
T 1-3(1) T
- =i = \}!&, €
-2 -
. WX
7 -Un®
= eO =1
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Exit Ticket Curve Sketching

Curve Sketching Steps

1. Intercepts (if given f(x))
— x-intercept: set y = 0 and solve
— y-intercept: set x = 0 and solve

2. First Derivative Sign Line (monotonicity)
— critical points: f’(z) = 0 or DNE
— draw line, label critical points, mark positive/negative ranges

3. Second Derivative Sign Line (concavity)
— inflection points: f”(z) = 0 or DNE
— draw line, label inflection points, mark positive/negative ranges

4. Asymptotes & End Behavior
— domain issues: f(z) DNE
— vertical asymptotes: denominators=0
— end behavior: xll)gloo f(zx)

Find everything you need to graph the function: f(x) = e3* — &>
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Exit Ticket Curve Sketching

Curve Sketching Steps

1. Intercepts (if given f(x))
— x-intercept: set y = 0 and solve
— y-intercept: set z = 0 and solve

2. First Derivative Sign Line (monotonicity)
— critical points: f’(z) =0 or DNE
— draw line, label critical points, mark positive/negative ranges

3. Second Derivative Sign Line (concavity)
— inflection points: f”(z) =0 or DNE
— draw line, label inflection points, mark positive/negative ranges

4. Asymptotes & End Behavior
— domain issues: f(z) DNE
— vertical asymptotes: denominators=0
— end behavior: xgrinoo f(zx)

Find everything you need to graph the function: f(z) = ¥ —
Step 4: Intercepts

0=e3%_ e5% N= e3(6)-e5[°$ 5\293: \‘\1_ s en line
&= -€-¢ Pl = qe¥-2565:0
\nles")z\nle"‘) =1-1 %3".-. 2.565"
Bx = 3% -0 M(ae) = In(z5e™)
2%=0 Wmia)+3x = nl2s)+ bx
x=0 ‘i\n{%)-_-x
4 -
Step2: y-sign line - ._l.
P'0=3e*-5¢"-0 wlze)
3e3¥= ses,‘
Y. Asymptotes
ni3e¥) = hlse*) Stepi-AsyMp

Wl 130 = Inls)+ 16x)inle)
W 2)*3x= Inls)+ 6x

W(3)-Inls)= 2x
wmi2)=2x

Linl3)=x
» -

R t 15:=0
z\nlé) =-.0.25 ‘:&.\ = nly)e0

verkcaol: none
Worizontal: ,%?’we pogitive
\imﬁes"-e‘r” =& (-1+e¥) =00
x

2% Sx
\m € -€ =0
xa=-P
Wint: by x=-100 ‘

~300 500 ——0 —
e -e =e300-850°
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Exit Ticket Extrema

First Derivative Test Suppose f(z) has a critical point at © = ¢. We classify the critical
points as follows:

e if f'(x) changes its sign from positive to negative at * = ¢, then there is a local
maximum at r = c.

e if f'(r) changes its sign from negative to positive at = ¢, then there is a local
minimum at xr = c.

e if f/(x) does not change its sign at © = ¢, then there is neither a local minimum or
maximum at r = c.

Second Derivative Test Let f(x) be a function such that f’(¢) = 0 and the function has a
second derivative in an interval containing c. We can classify the critical point as follows:

e if f”(c) > 0 then f has a local minimum at the point (¢, f(c)).
e if f”(c) <0 then f has a local maximum at the point (¢, f(c)).

e if f”(c) = 0 then the test is inconclusive

What can you tell me about the following functions (increasing, decreasing, maximums, minimums):

1. f(z)=1a%— 322+ 52 2. f(t)=t—3(t—1)3
3. h’(x):z;f—ﬁ 4. f(z) =€l — 2 -2
5. f'(0)=0; f'(z) =6z +1 6. f'(1)=0; g"(t) = —2et +te?
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Exit Ticket Extrema

First Derivative Test Suppose f(z) has a critical point at © = ¢. We classify the critical
points as follows:

e if f/(x) changes its sign from positive to negative at x = ¢, then there is a local
maximum at z = c.

e if f'(x) changes its sign from negative to positive at * = ¢, then there is a local
minimum at r = c.

e if f'(x) does not change its sign at © = ¢, then there is neither a local minimum or
maximum at z = c.

Second Derivative Test Let f(z) be a function such that f'(c) = 0 and the function has a
second derivative in an interval containing c. We can classify the critical point as follows:

e if f”(c) > 0 then f has a local minimum at the point (¢, f(c)).
e if f”(c) <0 then f has a local maximum at the point (¢, f(c)).

e if f”(c) = 0 then the test is inconclusive

What can you tell me about the following functions (increasing, decreasing, maximums, minimums):

1. f(x)=1a® — 322+ 5 2. f(t)=t—3(t _ul.w,)é
'y - lx +5:=0 Fllg= 1= 1D
(x-5)(x-1=0 - —= =
¥ - % == G ;”é)’%"i
v ] - - 3 ""30
' 5 : +————t - £ DNE
: |
moX  min WX geidver nain
3. h’(x)zz?;—_l 4. fl(z) =el* —e2® -2
S u:é‘Z: w-u-2 =0
gy =0 (u-2) (urh=0
33 €tz -1
e”-1=0 X=$iniz) MeVeY
—_— min . min
o tinl2)
5. f'(0)=0; f'(z) =6z +1 6. f'(1)=0; ¢"(t) = —2et +te?
Crit. p%. X=0 crit. p\'. x:=1
E'(0)=Llov+ g'(1y=-2¢"+ 1€
e =2t g
\V/ concave up =-§ O
o "R concave down
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Exit Ticket Concavity

Concavity Let f(z) be a twice differentiable function with f”(¢) = 0 or DNE (i.e. ¢ is a
possible inflection point). We say that:

e f(z) concave up on an interval I = (a, b) if f”(x) > 0 for all x such that a <z <b
e f(z) concave down on an interval I = (a,b) if f”(x) < 0 for all z such that a <z <b

e c is an inflection point if the function is continuous at the point and the concavity
changes at that point

Identify when the function is concave up and concave down:

1. f(z) =32"—52° +3 2. f(t) =3(t—1)3
3. hx) = %x% — s +3 4. g(t) = te™
5. f"(z) = In(3z) — In(5) 6. f'(z) =el® —e2 -2
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Exit Ticket Concavity

possible inflection point). We say that:

changes at that point

Concavity Let f(z) be a twice differentiable function with f”(¢) = 0 or DNE (i.e. ¢ is a

e f(z) concave up on an interval I = (a,b) if f”(x) > 0 for all x such that a <z <b
e f(z) concave down on an interval I = (a,b) if f”(x) < 0 for all z such that a < z < b

e c is an inflection point if the function is continuous at the point and the concavity

Identify when the function is concave up and concave down:

1. f(z) =32% =523 +3

Fixy=16x1-15%"
PU)= bOX -30% =0
z30x(x*-1)=0
-+ - ¢

1 1
v v
\

- o '
down Up down  up

3. h(x) = %xé — ¢2®+3
hix)= 4x 3. I

W= 35, 2
u

3xta = X Y, ¥ . -
5 b -
3 U
4y ® down

5. f"(x) =In(3z) — In(5)
Wn(3x)-In15)=0
Int3x) = ntS)
A%z 5

%

2. f(t)=3(t—1)3

Pr= ey
M'w=-% - =0

2 ' _
-3 s =0

* -
up ' dowon
4. g(t) =te™!
6(&'): e’*-te,"
U ¢ -t -t
gilt)=-e"-e +te
z-2etitet .
et (-244)=0 —é—
t=2

6. fl(z) =t —e2® -2

c“\x) = L\e"‘x _ Zezx =°
Yet* =2
Vi the = bnl2) + 2
2x=nl%)
%= -‘i\f\\':i\

- +
_‘_

Linld)
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Exit Ticket Newton’s Method

Newton’s Method
If x,, is an approximation of a solution of f(z) = 0 and if f’(z) # 0 the next approximation

is given by,

n

Find the function you can apply Newton’s method to:

1. 2% = cos(x) 2. 2 — 2% = sin(x)

Find an initial guess and write the equation for z; using Newton’s method:

1. f(z)=a® -T2 +8z—1 2. flz)=2%—2?— 152 +1

Use Newton’s method and the initial guess given to find x5:

1. f(x)=—-a3+4;20=1 2. f(x)=cos(x) —2x; g =0
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Exit Ticket Newton’s Method

Newton’s Method
If x,, is an approximation of a solution of f(z) = 0 and if f’(z) # 0 the next approximation
is given by,

n

Find the function you can apply Newton’s method to:
1. 2% = cos(z) 2. 2 — 2% = sin(x)
F1¥)= & coslx) Flx)= 2-%*- sinix)
fx)= cosxy -x* tid= sinbd) -2 +x°

Find an initial guess and write the equation for z; using Newton’s method:

1. f(z) =2 -T2 +8z—1

2. flz)=2%—2?— 152 +1
floy=-| FLO=1-F+8-1=1) floy=1  BlO)= 1-1-1541 =-1H
] 2) '
%o = 2z Yo z or —8-
_u UY-Rue +8012) -\
X\" 2 -

() - "_ ]
3012¥ - 1dl'12) + 8 %= "i - '?:u:;t;l"li -'-';;H

Use Newton’s method and the initial guess given to find x5:

1. f(x)=—-a3+4;20=1

2. f(x)=cos(z) —2x; g =0
2
£'lxy=-3x 0= -sintxd - 2
*\’ \ _3\“; %“’ 0 -s‘“‘o)'z
=\-%=2 z0- -z
- -2
-\
s z-=
cn . ~l2y+H -2
xl- 2 -3lz‘l = .‘i
o L.
12 1 gosliz)-2li2)
T2 § %2° 27 _sintud -2

= %3 =L, costud-1
- 27 snl)-2
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Exit Ticket Anti-derivatives

Fill in the derivatives and anti-derivatives:

1. L [ka] = 2. /kd:z::

3. L[ka"] = 4. /x”dm—

5. L(In(z)] = 6. /idx:

7. 4 [log,(a)] = 8. /x ;l(a)dxz
9. 4le”] = 10./ef”d:c =
11. L o] = 12./a””dz =

13. 4 [sin(z)] = 14. / cos(z)dz =
15.-L [cos(z)] = 16. / sin(r)dz =
17.-L [tan(z)] = 18. / sec?(r)dr =

/

19.-L [sec(z)] = 20. [ sec(z) cos(z)dx =

Use the rules above to find the integrals below and check your answer:

3_ .2
1. /31—3x4—cos(:t)da: 2. /$ 26 dx

Xz

1
3. /md:c 4. /6:c(x2—|—1)2dx
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Exit Ticket Anti-derivatives

Fill in the derivatives and anti-derivatives:

1. Lkl =¥k 2. /k:dx:Kx*C

3. & [ka"] =k 4, / dr =g X AC

5. L [In(z)] = + 6. / liz=\nlx\ ¥C

7. £ flog,(+)] = s 8. | — 111 i = \0gal¥) ¥C
9. L] =" 10. [ e"dz = e tC

11.4 o] = o Wnla) 12. [ a*dx = \nm R 1

13.4 [sin(z)] = COSIX) cos(z)dz = SNLX) ¥C

15.2 [cos(z)] = - SNX)

p—
=]

> &
\\\\\\\

sin(z)dr =-COS(X)*C

17.-4L [tan(z)] = sect(x) 18. [ sec?(z)dz = Yonix) ¥cC

19.-L [sec(z)] = sec(x)ton(x) 20. [ sec(z)cos(x)dr = seCx)¥C

Yonix)

Use the rules above to find the integrals below and check your answer:

1. /3””—3m4—cos(x)da: 2. /x < S-—-

\ _2* 3 5 . -
"Ww»©° T X -sinlx)ic =Sx-ex dx

\/11_—xdl’ = S (- X\'"zdx 4. /61’(3:2 +1)%dx
£ guess: (1) ¥C £+ guess: (L +1Y +e

" guess’ 20-xY'2 +C
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