

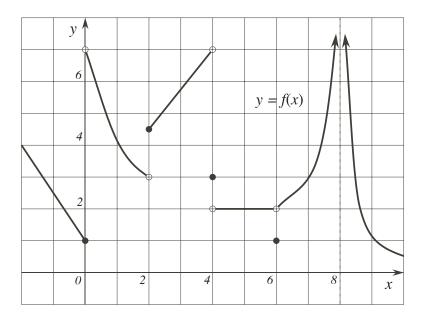
1. The graph of y = f(x) for $-2 \le x \le 10$ is shown above. Find the values of the following limits if it exists:

(a) $\lim_{x \to 6} [2f(x)] \stackrel{?}{=} 2[\lim_{x \to 6} f(x)] = 2[2] = 4$

(b)
$$\lim_{x \to 2^{-}} [x \cdot f(x)] \stackrel{?}{=} \lim_{x \to z^{-}} x \cdot \lim_{x \to z^{-}} f(x) = 2 \cdot 3 = 0$$

(c)
$$\lim_{x \to 3} \frac{f(x) - f(3)}{x - 3} \stackrel{?}{=} \frac{\text{rise}}{\text{run}} = \frac{2.5}{2} = \frac{5}{2} = \frac{5}{4}$$

(d)
$$\lim_{x \to 0^+} \frac{\sqrt{f(x)}}{f(x) + 1} \stackrel{?}{=} \frac{\lim_{x \to 0^+} f(x)}{\lim_{x \to 0^+} f(x) + 1} = \frac{\sqrt{7}}{7 + 1} = \frac{\sqrt{7}}{8}$$
$$\lim_{x \to 0^+} f(x) = 7$$



- **2.** The graph of y = f(x) for -2 < x < 10 is shown above.
- **a.** Find all values of x in (-2, 10) for which the function y = f(x) is discontinuous.

```
x=0,2,4,6,8
```

b. Amongst the values of x in (a), which of them are places where there is a **removable discontinuity**? $\lim_{x \to c} f(x) \neq f(c)$ X = 6

c. Amongst the values of x in (a), which of them are places where there is a jump discontinuity? lim f(x) = lim f(x)

x = 0, 2, 4

x=8 is a special case: $\lim_{x \to 8} f(x) = \infty \quad \text{and} \quad \lim_{x \to 8} f(x) = \infty \quad \text{so} \quad \lim_{x \to 8} f(x) = \infty \quad \text{, but we can not "plug" this hole}$ with $(8, \infty)$. In fact it is deemed as neither a jump or a removable discontinuity.

d. Amongst the values of x in (a), which of them are places where f(x) is **left** or **right** continuous? Explain your choices.

Left continuous:

X = 0

Right continuous:

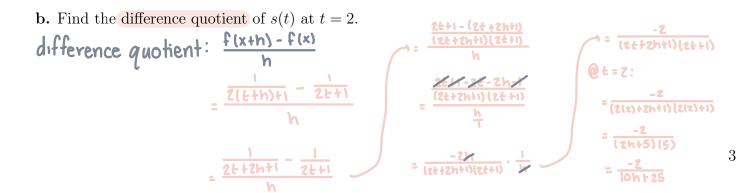
x = 2

3. The position of a particle at time t seconds moving on a straight line is given by $s(t) = \frac{1}{2t+1}$ meters. Answer the following questions below.

a. Find the average velocity of the particle between t = 2 and t = 2 + h. Simplify your answers as far as possible assuming $h \neq 0$.

average:
$$\frac{f(b)-f(a)}{b-a}$$

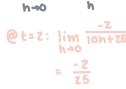
 $\frac{f(z+h)-f(z)}{z+h-2}$
 $=\frac{1}{2(z+h)+1} - \frac{1}{2(z)+1}$
 h
 $=\frac{1}{2h+5} - \frac{1}{5}$
 h
 $=\frac{5-(zh+5)}{h}$
 $=\frac{5-2h-5}{5(2h+5)}$
 $\frac{h}{1}$
 $=\frac{-2h}{5(zh+5)} \cdot \frac{1}{h}$



c. Explain using limits how one can find the slope of the tangent line to $s(t) = \frac{1}{2t+1}$ at t = 2.

```
\lim_{h \to 0} \frac{f(z+h) - f(z)}{h}
=lim -2
h->0 10h+25
 =\frac{-2}{25}
```

d. Find the instantaneous velocity of the particle at t = 2. Draw a graph to illustrate your answer. **IROC:** $\lim_{h \to 0} \frac{f(t+h) - f(t)}{h}$ @t=2: $\lim_{h \to 0} \frac{-2}{10h+25}$ = $\frac{-2}{25}$



e. Find the equation of the tangent line to $s(t) = \frac{1}{2t+1}$ at t = 2.

tangent line:
$$y - f(x_1) = f'(x_1)(x - x_1)$$

 $m = -\frac{2}{25}$
 $x_1 = 2$
 $y_1 = \frac{1}{2(2)+1} = \frac{1}{5}$
 $y - \frac{1}{5} = -\frac{2}{25}(x - 2)$
 $y - \frac{1}{5} = -\frac{2}{25}x - \frac{4}{25}$
 $+\frac{1}{5}$
 $+\frac{5}{25}$
 $y = -\frac{2}{25}x + \frac{1}{25}$

2

4. Solve for x at which the two curves intersect: $\begin{cases} y = 3\ln(x) - 2\\ y = \ln(3 - x^3) \end{cases}$

$$3\ln(x) - 2 = \ln(3 - x^{3}) = \ln(x^{3}) - \ln(3 - x^{3}) = 2$$

$$\ln(\frac{x^{3}}{3 - x^{3}}) = 2$$

$$e^{\ln(\frac{x^{3}}{3 - x^{3}})} = e^{2}$$

$$\frac{x^{3}}{3 - x^{3}} = e^{2}$$

$$x^{3} = e^{2}(3 - x^{3})$$

$$x^{3} = 3e^{2} - e^{2}x^{3}$$

$$x^{3} + e^{2}x^{3} = 3e^{2}$$

$$x^{3} + e^{2}x^{3} = 3e^{2}$$

$$x^{3} + e^{2}x^{3} = 3e^{2}$$

$$x^{3} = \frac{3e^{2}}{1 + e^{2}}$$

$$x = 3\sqrt{\frac{3e^{2}}{1 + e^{2}}}$$

$$B = P\left(1 + \frac{r}{n}\right)^{nt}; \qquad B = Pe^{rt}.$$

Find the annual interest rate of an account that quadruples its principal in 10 years if interest is compounded (a) monthly and (b) continuously.

(a) quadruples at t=10:
$$4P = P(1+\frac{r}{12})^{12}(10)$$

 $4 = (1+\frac{r}{12})^{120}$
 $4^{1/120} = (1+\frac{r}{12})$
 $4^{1/120} - 1 = \frac{r}{12}$
 $12(4^{1/120} - 1) = r$

(b) quadruples at t = 10: $4P = Pe^{r \cdot 10}$ $4 = e^{10r}$

4= e^{10r} |n(4) = |n|e^{10r}) |n(4) = 10r <u>|n(4)</u> = r

6. Consider the function

$$f(x) = \begin{cases} a(2^x) + 6 & -\infty < x \le 1\\ \frac{2x^2 - x - 1}{x - 1} & 1 < x < +\infty \end{cases}$$

.

Find the value of a such that f(x) is continuous at x = 1. continuous: $\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} f(x) = f(1)$

given: left continuity i.e. limf(x)=f(1)

find a such that: $\lim_{x \to t^*} f(x) = f(1)$

$$\lim_{x \to 1^{+}} \frac{2x^{3} - x - 1}{x - 1} = a(z') + b$$

$$\lim_{x \to 1^{+}} \frac{(zx + 1)(x - 1)}{x - 1} = 2a + b$$

$$\lim_{x \to 1^{+}} (2x + 1) = 2a + b$$

$$3 = 2a + b$$

$$-3 = 2a$$

$$-\frac{3}{2} = a$$

7. Find the equation of the tangent line to the graph of $y = 8e^x - 2x + 1$ which is parallel to the line whose equation is -6x + y = 4. Give your answer in the form y = mx + b. parallel = same slope, tangent slope = derivative

find x where f'(x) = slope of given line

Step 1: Find slope of given line	Step 3: Find f(x1)
- 6x +y = 4	$f(0) = 8e^{0} - 2(0) + 1$
y = 6x + 4	=8(1)-0+1
m=6	=8+1
Step 2: Find x, s.t. f'(x)=m	= 9
f'(x) = 8e ^x -2 = 6	
8e ^x = 8	Step 4: Plug into $\gamma - f(x_i) = f'(x)(x - x_i)$
e ^x =1	y-9=6(x-0)
<u>lnte"</u>) = ln(1)	y - 9 = 6x
X,= 0	y=6x+9

8. The profit, in thousands of dollars, from the sales of a certain ipod accessory is given by the formula

$$P(x) = -2x^2 + 12x - 13$$

where x is the number of dozens accessory sold.

(a) By completing the square, write P(x) in the form $P(x) = a(x+b)^2 + c$. Show clearly all your steps. $\lfloor (x + \frac{b}{2})^2 + x^2 + bx + (\frac{b}{2})^2$

```
P(x) = -2x^{2} + 12x - 13

factor out a

= -2(x^{2} - 6x) - 13

complete the square

b = -6, (±b)^{2} = (-3)^{2} = 9

= -2(x^{2} - 6x + 9 - 9) - 13

= -2((x - 3)^{2} - 9) - 13

= -2(x - 3)^{2} + 18 - 13

= -2(x - 3)^{2} + 5
```

(b) Find the number of dozens of accessory that must be sold so profit is at its maximum. What is the maximum profit?

```
maximum = vertex = (-b,c)
maximum = (3,5)
```

the maximum profit is 5 thousand dollars when 3 dozen accessories are sold