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1. The statement: “f 0(x) is on a < x < b.” then

1a. “f(x) is increasing on a < x < b.”

2. The statement: “f 0(x) is negative on a < x < b.” then

2a. “f(x) is on a < x < b.”

2b. “The slope of the graph of f(x) is on a < x < b.”

3. The statement: “The graph of f(x) is concave up on a < x < b.” is the same as:

3a. “f 00(x) is on a < x < b.” is the same as:

3b. “f 0(x) is on a < x < b.”

4. The statement: “f 0(x) is decreasing on a < x < b.” is the same as:

4a. “f 00(x) is on a < x < b.” is the same as:

4b. “The graph of f(x) is on a < x < b.”

5. The figure below is the graph of the derivative f 0(x) of f(x) for �4 < x < 6. Find all intervals on
which the graph of f(x) is concave up?

(i) Find all values of x in (�4, 6) for which f(x) is in-
creasing.

(ii) Find the critical points of f(x) in (�4, 6). Are these
local maximums or minimums?
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(iii) Find all intervals on which the graph of f(x) is concave up in (�4, 6).

(iv) Find all values of x in (�4, 6) for which f(x) has an inflection point.
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6. Find all critical points of f(x) = 3 3
p
x2 � 4. Classify all of them using first derivative test.

7. Find the maximum and minimum value of f(x) = 3 3
p
x2 � 4 for �1  x  3.
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8. Draw a graph of a continuous function y = f(x) except at x = 2 with the following properties.
Indicate clearly its concavity and where it is increasing/decreasing.

a. The points (0, 0) and (4, 1) are on the graph.

b. f 0(0) does not exist. f 0(4) = 0.

c. lim
x!2�

f(x) = �1 and lim
x!2+

f(x) = +1.

d. y = �4 is a horizontal asymptote.

e. f 0(x) > 0 for (�1, 0) [ (4,1).

f. f 0(x) < 0 for (0, 2) [ (2, 4).

g. f 00(x) > 0 for (�1, 0) [ (2,1).

h. f 00(x) < 0 for (0, 2).
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9. Find all vertical and horizontal asymptotes of the function f(x) =
e2x + 5ex � 6

e2x � 3ex + 2
.

10. Find the value(s) of c satisfying the conclusion of the MVT for function f(x) =
p
x� 4 on the

interval [5, 13]. Draw a picture to illustrate your answer.
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11. Find the range of the function f(x) = 3 � xe�x2/8 on [1,1). State clearly if the function attains
absolute minimum and absolute maximum on the given domain.

You may use the estimates e�1/8 ⇡ 0.9 and e�1/2 ⇡ 0.6.
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12a. Find the dimensions of the rectangle with the smallest perimeter amongst all the rectangles with
area 100 cm2.

12b. Find the dimensions of the rectangle with the largest area amongst all the rectangles with perimeter
100 cm.
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A = x y = 100
·
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P = 2x + 24 X = 18
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A(25) = 50(25) - (25)2

25 = X
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X = 25

y = 50 -25 = 25



13. Consider a cylindrical container with a hemispherical cap on one end and a closed circular end as
shown below. Let h be the height of the cylinder and r be its radius.

a. Find the volume V of the container in terms of the radius r only if the surface area of the container
is 100⇡ sq. meter. You may use the formulas 4⇡r2, 4

3⇡r
3, 2⇡rh and ⇡r2h .

h

r

b. Find the possible values of r in the construction above.

You Are Not Required To Optimize the Function in Part (a).

7
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= + r3) + Tra
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100n = 2(4 +-2) + (πw2) + 2πrh

100n = 2πr2 + +r + 2πrh
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when wis really large , h must be really small
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100 + = 3πr2

100 range of r is :

[100 Or!


