Math 10350 – Example Set 03B Sections 2.2, 2.3 & 2.4

Limit of a function. What happens to $f(x)$ as x gets as close to a fixed value c as we want? This question is answered with the concept of the limit of a function.

Explain what each of the following limits mean.

$$
L = \lim_{x \to c^-} f(x)
$$
 where $f(x)$ goes as we increase x to c
\nwe call this the left-handed limit of $f(x)$ as x approaches c.
\n
$$
L = \lim_{x \to c^+} f(x)
$$
 where $f(x)$ goes as we decrease x to c
\nWe call this the right-handed limit of $f(x)$ as x approaches c.
\n
$$
L = \lim_{x \to c} f(x)
$$
 where $f(x)$ goes as x goes to c on both sides
\nWe call this the two-handed limit of $f(x)$ as x approaches c.
\n
$$
L = \lim_{x \to c} f(x)
$$

1. The graph of a function *f* is shown in Figure 1. By inspecting the graph, find each of the following values and limits if it exists. If the limit does not exist, explain why.

Theorem 1 (1) $\lim_{x\to c} f(x)$ exists $\iff \lim_{x\to c^-} f(x)$ and $\lim_{x\to c^+} f(x)$ both exist and are equal.

Moreover, (2) $\lim_{x \to c} f(x) = L \iff \lim_{x \to c^-} \frac{\int f(x)}{x} = L = \lim_{x \to c^+} \frac{\int f(x)}{x}$.

Remark If any of the following are true:

 $\lim_{x \to c^{-}} f(x) = \infty;$ $\lim_{x \to c^{-}} f(x) = -\infty;$ $\lim_{x \to c^{+}} f(x) = \infty;$ $\lim_{x \to c^{+}} f(x) = -\infty$

then the graph of $f(x)$ has a **a a a a a a b c a a a c a c c**.

Definition (a) A function $f(x)$ is continuous at $x = c \iff f(c)$ is defined and $\lim_{x \to c} f(x) = f(c)$.

(b) A function $f(x)$ is **left** continuous at $x = c \iff f(c)$ is defined and $\lim_{n \to \infty} \int_{a}^{b} f(x) dx = f(c)$. $\lim_{x\to c^-} f(x)$

(c) A function $f(x)$ is **right** continuous at $x = c \iff f(c)$ is defined and $\frac{\lim_{x \to c^*} f(x)}{\lim_{x \to c^*} f(x)} = f(c)$.

(d) A function $f(x)$ has a **jump** discontinuous at $x = c \iff \lim_{x \to c^-} f(x) = \lim_{x \to c^+} f(x)$.

(e) A function $f(x)$ has a removable discontinuous at $x = c \iff \lim_{x \to c} f(x)$ exist but $\frac{\lim_{x \to c} f(x)}{\lim_{x \to c} f(x)} \neq f(c)$.

2. Comment on the continuity at $x = -1, 0, \overline{4}, 2$ for $f(x)$ in Figure 1. Are there any removable discontinuity?

Comment on the continuity at $x = -1, 0, \frac{3}{4}, 2$ for $f(x)$ in Fi
 I. $x = 1$ $\lim_{x\to -1} f(x)=1$, but f(-1)=3 $\pi x = 2$
lim f(x) = ∞ #lim f(x) 1^{x-2}
1 $x \rightarrow 2^{x}$
1 $x \rightarrow 2^{x}$ removeable discontinuity asymptote & jump discontinuity

 π . $x=0$ $x=0$ \mathbb{U} . $x=3$ $\lim_{x\to 0} f(x) \neq \lim_{x\to 0} f(x)$

 $\lim_{x\rightarrow 3} f(x) = 1$, $f(3)$ DNE jump discontinuity removeable discontinuity

Figure 1

3. The graph of $f(x)$ is given in Figure 1 and $g(x) = 3x + 2$. By thinking about the values each function $f(x)$ and $g(x)$ approaches in the expressions below deduce the value of each limits:

(*a*) lim *x*!3 [2*f*(*x*)+3*g*(*x*)] ? = (*d*) lim *x*!0 [*f*(*x*) *^g*(*x*)]⁴ ? = (*b*) lim *^x*!2⁺ [*f*(*x*) *· ^g*(*x*)] ? = (*e*) lim *x*!0 p*f*(*x*) ? = (*c*) lim *x*!0 *g*(*x*) *f*(*x*)+4 ? = ⁼ 2 limf(x) ⁺ blimg(x ⁼ Climf(x) limg(x] X- >3 X-G ⁼ 2(1) ⁺ 3(3(3) ⁺2)) ⁼ [IDNE) - (310)+2)]4 ⁼ 2+ 3(11) : DNE ⁼ 2 ⁺ 33 ⁼ 35 ⁼ limf(x) · lim, g(x) x=27 x - ⁷² ⁼ limf(x) ⁼ 3 : (3(2) ⁺2) X-> ⁰ ⁼ 3 .^G ⁼ NE ⁼ DNE ⁼ ²⁴ lim g(x) X-8 lim (f(x)) ⁺⁴ X +0 - 3(0)+ 2 - 2+ 4 I ² ⁼ I ⁴

Properties of Limits. Suppose $\lim_{x \to c} f(x)$ and $\lim_{x \to c} g(x)$ exist. Then we have the following statements:

(1)
$$
\lim_{x\to c} k \cdot f(x) =
$$

\n $\kappa \cdot \lim_{x\to c} f(x)$
\n $\left[\lim_{x\to c} f(x)\right]$
\n $\left[\lim_{x\to c} f(x) + g(x)\right]$
\n $\left[\lim_{x\to c} f(x)\right]^n =$
\n $\left[\lim_{x\to c} f(x)\right]^n$
\n $\left[\lim_{x\to c} f(x)\right]^n$