Math 10350 – Example Set 03C Sections 2.2, 2.3 & 2.4 Computing Limits and Continuity

1. (Limit Concept) Consider the piecewise defined function $2 - \times \times^2 \qquad 1$ Section I o I 1 II

 $f(x) = \begin{cases} 2-x & -\infty < x < 0\\ x^2 & 0 \le x < 1\\ 1 & 1 \le x < +\infty \end{cases}$

(a) Compute the following limits if they exist without sketching the graph.

i. $f(-1)$	ii. <i>f</i> (3)	iii. $\lim_{x \to 1^{-}} [2f(x) - 5]$	iv. $\lim_{x \to 0} (f(x) - 1)^2$	v. $\lim_{x \to -5} (f(x))^2$
(i) f (-1)	(ii)F(3)) (iii) lim[2f(x)-5]	(iv) lim(f(x)-1) ² x=0	(v) lim(f(x)) x→-5
-120	321	$=2 \lim_{x \to 1} f(x) - 5$	$= \left[\lim_{x \to \infty} \left(f(x) - b \right)^2 \right]^2$	$= \lim_{x \to 5} f(x) \int_{-\infty}^{\infty} $
section I	section $\frac{1}{f(3)} = 1$	×->1-	$= \left[\lim_{x \to 0} f(x) - 1 \right]^2$	sectionI
+(-1)=2=(1) =2+1		section μ lim $x^2 = 1$	×->0	lim (2-x)=2-(-5) x-3-5 =7
=3		x->1°	section $1:2$ lim $2-x=2$	= [7] ²
		= 2(1)-5	$\lim_{x\to 0^+} x^2 = 0$	= 49
		=-3	= DNE	

(b) Without sketching the graph of f(x), determine the continuity of f(x) at (i) x = 0 and (ii) x = 1.

(i) X=0	
lim f(x)	$\mathbf{T} = \mathbf{X} \left(\mathbf{i} \right)$
section I	limt(x)
$= \lim_{x \to \infty} (z - x)$	section
x->0 - 2	= lim (X)
- [= 1
lim f(x)	lim f(x)
$X \rightarrow 0^{\gamma}$	X÷I ^e
	section I
sectionI	= W (エ) ×→!*
-0	= 1
$f(0) = (0)^{2}$	
sectionI	f(1) = 1
right continuous	section III
ump discontinuity	continue
Janet	

Stepz:

f(1)=1

 $f(0) = (0)^{2}$

=0

fill in circles

(0,0),(1,1)

Step1: $\lim_{x\to 0^{-}} f(x) = \lim_{x\to 0^{-}} (z-x)$ = 2 $\lim_{x\to 0^{+}} f(x) = \lim_{x\to 0^{+}} (x^{2})$ = 0 $\lim_{x\to 0^{+}} f(x) = \lim_{x\to 0^{+}} (x^{2})$ = 1 $\lim_{x\to 0^{+}} f(x) = \lim_{x\to 0^{+}} (1)$ = 1Open circle at

(1,1), (0,0), (1,1)

Step3: •graph f(x)=2-x in section 1 •graph f(x)=x² in section 2 •graph f(x)=1 in section3 **2.** Using limits find k such that the function f(x) (a) is continuous at x = 2 and (b) is discontinuous at x = 2. Sketch a graph clearly depicting the nature of f(x) at x = 2 in (a) and (b).

graphing first reveals that this is a hole f	$f(x) = \langle$	$\int \frac{x^2 + x - 6}{x - 2}$	$x \neq 2$	any time x=c is sing led out (with x≠c as the other
you can visually be what k should be		k	x = 2	section) we have a noice

To be continuous at x=2, we need to fill the hole that way $\lim_{x\to 2} f(x) = \lim_{x\to 2^+} f(x) = f(z)$. To create a discontinuity we must break one equality.

(a)
$$\lim_{x \to z^{-}} f(x) = \lim_{x \to z^{-}} \frac{x^{2} + x - b}{x - 2}$$

 $= \lim_{x \to z^{-}} \frac{(x + 3)(x - 2)}{(x - 2)}$
 $= \lim_{x \to z^{-}} \frac{(x + 3)(x - 2)}{(x - 2)}$
 $= \lim_{x \to z^{+}} x + 3$
 $= 5$
 $= 5$

to fill the hole we need f(z)=5, thus k=5

(b) To leave the discontinuity, we make K anything but 5

3. Determine the constants a and b such that the following function is continuous on the entire real line

$$f(x) = \begin{cases} 2 & -\infty < x \le -1 \\ ax^2 + b & -1 < x < 3 \\ -2 & 3 \le x < +\infty \end{cases}$$

To be continuous, we need each of the pieces to line up, i.e. $\lim_{x \to a^+} f(x) = f(a) = \lim_{x \to a^+} f(x)$ for all a Fix hole at x=3 Fix hole at x=-1 $\lim_{x\to -1^-} f(x) = f(-1) = \lim_{x\to -1^+} f(x)$ $\lim_{x \to 3^{-}} f(x) = f(3) = \lim_{x \to 3^{+}} f(x)$ section I π section I II III $\lim_{x \to -1^{-1}} (z) = 2 = \lim_{x \to -1^{+1}} (ax^{2} + b)$ $\lim_{x \to 3^{-}} (ax^{z}+b) = -Z = \lim_{x \to 3^{+}} (-Z)$ $2 = \lim_{x \to -1} (ax^2 + b)$ lim(ax²+b)= -2 ×→3⁻ 2=a+b $a(3)^{2}+b=-2$ $q_{a+b} = -7$

We must now reconcile these two equations: (i) a+b=2we use the method of (1)9a+b=-2 substitution to solve: I Stepz (i) a=2-bStep 1: label the equations (ii) 9atb=-2 Step 2: solve eq. (i) for a Il step3 Step3: plug this into eq. (ii) (i) a = 2 - bStep 4: solve eq. (ii) for b (ii) 9(2-b)+b=-2-20 + 00 = -20-20 = -20-20 = -20b = -20Step5: plug b back into eq. (;) Step 4 check: $\lim_{x \to -1^{+}} \frac{1}{2}x^{2} + \frac{5}{2} = \frac{1}{2}(-1)^{2} + \frac{5}{2}$ $= -\frac{1}{2} + \frac{5}{2}$ $= \frac{4}{2} - 2$ $f(x) = Qx^{2} + b$ $f(x) = \frac{-1}{2}x^{2} + \frac{5}{2}$ U Step5 い) な= こ- 🚽 $\lim_{x \to 3^{-1}} \frac{1}{2} x^2 + \frac{5}{2} = -\frac{1}{2} (3)^2 + \frac{5}{2}$ $= -\frac{9}{2} + \frac{5}{2}$ a= 4- 5 a=--; = - 4 . .- 7