1. Find the equation(s) of the tangent line(s) to the graph of $y = x^3 + 2$ is parallel to the line 24x - 2y = 3.

2. Use the fact $\lim_{h \to 0} \frac{e^h - 1}{h} = \underline{1}$ to obtain formulas for $\frac{d}{dx}(e^x)$ and $\frac{d}{dx}(a^x)$.

3. The position (in feet) of a particle moving on a straight line is given by the function

$$s(t) = \frac{5}{t} + t^e + 2e^t + 3^t$$

Find an expression for the (instantaneous) velocity v(t). What is the velocity of the particle when $t = \ln 2$ seconds?

1 parallel lines have the same slope the derivative is the slope of the tangent line => we want to find x such that f'(x)=m where m is the slope of the given line.

Step 1: Find m Grewrite as y=mxtb	Step 2: Find f'(x) Lo use power rule	Step 3: Set f'(x)=m 5 solve for x
24x - 2y = 3	$f(x) = x^3 + Z$	$3x^2 = 12$
-2y = 3-24x	$f'(x) = 3x^2 + 0$	$x^2 = 4$
$N = \frac{3 - 24x}{-z}$	$f'(x) = 3x^2$	x = रम
-z $y = -\frac{3}{z} + 12x$		x=±2
y= 12x - 32		
m= 12		

We have now found the x values such that the slope of the tangent line is equal to the slope of the given line

```
Step 4: Find tangent lines w/ each slope

trangent line: y - f(x_i) = f'(x_i)(x - x_i)

case a: x_i = 2

f(z) = (z)^{3} + 2

= 8 + 2

= 10

y - 10 = 12(x - 2)

y - 10 = 12x - 24

y = 12x - 14

Step 4: Find tangent lines w/ each slope

(x_i) = f'(x_i)(x - x_i)

Case b: x_2 = -2

f(z) = f'(x_i)(x - x_i)

f(z) = f'(z) = f'(z)

f
```

2. Use the fact $\lim_{h \to 0} \frac{e^h - 1}{h} = \underline{1}$ to obtain formulas for $\frac{d}{dx}(e^x)$ and $\frac{d}{dx}(a^x)$.

	<u>d</u> .	f(x+h)-f(x)	0 0	• •		0 0	
•	.dx.(F(x))=	$\lim_{h\to 0} \frac{f(x + h) - f(x)}{h}$	• •				
•	المريح المريح	<u>d</u> (o×) · · ·	• •	* *			Se i diana ana ana ana ana ana ana ana ana ana
•	(a) Fina	dx (C) exth - ex.	0 0	• •		0	b) find $d \times (a + a + a)$
•	dx le	$\frac{d}{dx}(e^{x})$ = lim $\frac{e^{x+h}-e^{x}}{h}$	• •	• •		• •	b) Find $\frac{d}{dx}(a^x)$ $\frac{d}{dx}(a^x) = \lim_{h \to 0} \frac{a^{x+h} - a^x}{h}$
•		1. ehex-ex	0 0	• •		• •	$a^{h}o^{x}-o^{x}$
•		$= \lim_{h \to 0} \frac{e^h e^x - e^x}{h}$					$= \lim_{h \to 0} \frac{a^h a^x - a^x}{h} = 1$
•							x(a ^h -1)
•		$=\lim_{h \to 0} \frac{e^{x}(e^{h}-1)}{h}$	· ·	• •	• •	• •	$= \lim_{h \to 0} \frac{a^{x}(a^{h}-1)}{h}$
•		= $\lim_{h \to 0} e^{x} \left(\frac{e^{h} - 1}{h} \right)$		• •	• •	• •	
•		=11m el.h.		• •			$= \lim_{n \to \infty} a^{x} \left(\frac{a^{h} - 1}{n} \right)$
•		$= e^{x} \cdot \lim_{h \to 0} \left(\frac{e^{h}}{h} \right)$	-1 (• •		• •	$= \alpha^{\times} \frac{\alpha^{n-1}}{\alpha^{n-1}}$
•		= e · IIII (- N		• •	• •	• •	$= a^{\times} \cdot \lim_{n \to 0} \left(\frac{a^{n-1}}{n} \right)$
•		X	x	• •	• •	• •	=0 [*] In(a)
•		$= e^{x}(1) = e^{x}(1)$		• •		• •	
•			• •	• •	• •	• •	$\frac{h-1}{2} = \frac{h-1}{2}$
•			• •	• •	• •	• •	$\lim_{h \to 0} \left(\frac{a^{h}-i}{h}\right) = \ln(a) \text{ is a "Known"}$
			• •				

3. The position (in feet) of a particle moving on a straight line is given by the function

$$s(t) = \frac{5}{t} + t^e + 2e^t + 3^t.$$

				an 1ds'		pres	ssio	n fo	or the	e <mark>(</mark> i	nsta	anta	neo	us)	velo	ocit	y v	v(t)		Wh	at i	s t	he v	velo	city	of of	the	par	ticle	e wl	hen	t =	ln	2		
•	ļ	n	sta	2 M	ta	ne	OU	S	vel	00	:it	۲.	lin	n <u>5</u>	('t +	n) h	-5((t)	11	\$'	lt)	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•									ru														Qe	×.	d d×	la×)=	a×lı	nla).	•		•	•		•
•	•	sl	· t)	= 5	t	+. t	e t	Ze'	e [+]	3 ^t	•	•	•	•	•	•	•			•	•	•	•			•					•	•	•		•	
		s'((t)		5ť 5ť	·!-! -2 : 4	r et	e-1 e-1	+ 2	et et i	+.3 • 3	s ^t ·Ir In(1(3) (3)).	•											•										
•		s'l	In						²te					e In	(*)	÷.																				
•					° Č	<u> 5</u> In (z)	j ^{2 +}	e [Inlz)] ^{e.}	•••	4 +	3 ^{In (}	z) Ir	n(3)) .					•	٠	•		٠		•			٠					•	
•	•		•	•	•	•	•	•	•		•		•	•	•	•	•	•								•									•	•
•	•		•	•	•	•	•	•	•	•	•	•	•													•									•	•
•				•	•	•	•	•	•	•		•														•									•	•
			•				٠	•													•		٠		٠					٠					•	
•			•	•	•	•	•	•	•	•	•			٠	٠						٠	٠	٠		٠		•			٠					•	
•	•		•	•	•	•	•	•	•	•	•		•		•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•		•		•	
•			•	•	•	•	•	•	•	•	•	•	•		•	•		•		•	•		•	•	•	•	•	•	•	•	•		•	•		•