Math 10350 — Example Set 06C
Section 3.8 Implicit Differentiation
including Logarithmic Differentiation

1. Find the derivative of the given functions:

(a) (2x+ 1)cos(e) (b) (2€+ 1)cosz (a) (2x+ 1)cosz

2. Find the equation of the tangent line at the point P(1,2) on the circle 22 + y? = 5 by solving for y as an
appropriate expression of x.

Remark: For a general relation between z and y, it is diffi-
cult to write y as a function of . For example, 23 +13 = 2zy.
To find the slope at R(1,1) on the curve using the above
method, we need to find explicitly g(x). This is very hard!! Y=gl
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We say that y is an implicit function of z. To find Y in X3 +y%=oxy

X
such situation we employ a powerful method called Implicit
Differentiation.

d
3. Verify that the point (1,1) is on the curve 23 + 3® = 2xy. Find (a) d—y, (b) the slope of the curve at (1,1),
x
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and (c) the point(s) on the curve where the tangent line is horizontal. (b) y = —z+2 () (

d
4. Find —z if cos(zy) = = + y*.
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2. Find the equation of the tangent line at the point P(1,2) on the circle 22 4 3 = 5 by solving for 5 as an
appropriate expression of x.

we need Yo find v’ we need to find Fx): sompyer line:
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3. Verify that the point (1,1) is on the curve z® 4 3 = 2xy. Find (a) 70 (b) the slope of the curve at (1,1),
%

and (c) the point(s) on the curve where the tangent line is horizontal. ) y= —2+2 (© (16;/ ° 162/ 3)
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4. Find % if cos(zy) = x + 2.
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wapliciy differentation:
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Math 10350 — Example Set 06C
Power Functions, Exponential Functions, and Mixing them.

1. Determine whether the following functions are of the form [ f(z)]™,
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ad'®) and |f ]g(’”) where a and n are

constants, and f(x) and g(x) are functions of . Find their derlvatlves
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