Math 10350 – Example Set 07A 3.10 Related Rates

1. A particle is moving along the curve $y = \sqrt{x}$. As the particle passes through the point (4, 2), its x-coordinate increases at a rate of 3 cm/s. (a) How fast is the y-coordinate changing at this instant? (b) How fast is the distance from the particle to the origin changing at this instant? (Answer: (a) 3/4 cm/s; (b) $27/(4\sqrt{5})$ cm/s)

2. A spotlight on the ground shines on a wall 12 m away. If a man 2 m tall walks from the spotlight toward the building at a speed of 1.6 m/s, how fast is his shadow on the building decreasing when he is 4 m from the building. (Answer: 0.6 m/s)

3. The altitude of a triangle is increasing at a rate of 1 cm/min while the area of the triangle is increasing at a rate of 2 cm²/min. At what rate is the base of the triangle changing when the altitude is 10 cm and the area is 100 cm²? (Answer: -8/5 cm/min)

4. A boat is pulled into a dock by a rope attached to the bow of the boat and passing through a pulley on the dock that is 1 m higher than the bow of the boat. If the rope is pulled in at a rate of 1 m/s and remains taut, how fast is the angle of depression of the rope changing when the bow of the boat is 8 m from the dock? Note the angle of depression is the angle between the rope and the horizontal.

1. A particle is moving along the curve $y = \sqrt{x}$. As the particle passes through the point (4, 2), its x-coordinate increases at a rate of 3 cm/s. (a) How fast is the y-coordinate changing at this instant? (b) How fast is the distance from the particle to the origin changing at this instant? (Answer: (a) 3/4 cm/s; (b) $27/(4\sqrt{5})$ cm/s)

1. a particles position is described by the point (X(t), Y(t)) = (X(t), VX(t))

(a) change in **y-coordinate** over time => $\frac{dy}{dt}$ careful to keep track of what you are $\frac{d}{dt}(y(t)) = \frac{d}{dt}(\sqrt{x(t)}) = \frac{d}{dt}(x(t))^{1/2} = \frac{1}{2}(x(t))^{1/2} \cdot x'(t) = \frac{1}{2}\sqrt{x} \cdot \frac{dx}{dt}$ to $x'(t) = \frac{dx}{dt}$

```
\frac{d}{dt}(y(t)) = \frac{1}{2\sqrt{x}} \cdot \frac{dx}{dt}
given \cdot \frac{dx}{dt}(4,2) = 3
at(4,2): \frac{1}{2\sqrt{x}} \cdot 3 = \frac{3}{4}
```

```
(b) "rate of change" of distance from origin
```

```
distance: d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}
from (0,0): d_0 = \sqrt{(x_2)^2 + (y_2)^2}
```

distance of (x(+), Jx(+)): d=1(x(+))*+(1x(+))*

```
d' = \frac{1}{2} (x_{14})^{2} + x_{14})^{-1/2} (2x_{14}) \cdot x'_{14} + x'_{14})
at (4,2): \frac{1}{2} (x_{14})^{2} + (x_{14})^{-1/2} \cdot (2x_{14}) \cdot 3 + 3]
= \frac{1}{2} (x_{14})^{-1/2} \cdot (x_{14})^{-1/2} \cdot (x_{14}) \cdot 3 + 3]
```

= ((x(+))² + (x(+)))

= 27 2.120 = 27 - 4.15

2. A spotlight on the ground shines on a wall 12 m away. If a man 2 m tall walks from the spotlight toward the building at a speed of 1.6 m/s, how fast is his shadow on the building decreasing when he is 4 m from the building. (Answer: 0.6 m/s)

																						ans	5000	rC	hoic	e	wil	P	e p	osi	tije	
							th	ere	a	re	tw	0 4	sa	NS	to		ab	21	thi	50	ra	Dh										
							(i)	x	5	he	dis	tar	nce	: b	eti	ve	en	th	e.	ma	in	an	d	he	wa	1)						
								L	dis	ta	nce	st	ar	ts	at	12	m	ete	15	00	25	to	20	ro	dx de:		ا ما.(MIS				
			1.61	MIS G	2 0	m	(;;)	x	is	the	d	ista	mc	0	he		PD Y	ł	ne	5	m	ar	d	he	500	4	lia	nt				
			12			5	,	L	die	tor		st			at	20	~0	a	d	in	YP	nse	t .		2.4	X	5	MIS				
			16						uc				~			- 6 6									- , 11		10.6		,			
				h-:				4.	b	1:0	لما											h	00	مار	mad		bu	1:0	hl			
Y	8			TTU	ang		Mai		DY	iig								(11). M	S					שינ	mac		Y	-"9				
	×	12 1		tri	ian	gie	ma	90	py	m	an									12 1												
										e i na	ilar				6 :																	
	Y.	17										101			0.			¥.	12													
	2	24	-x 1_							ieg.			legi	2 1	0			2	- X 24													
•	4=	12-	·X							ieg	100		ieg	20	2			Y :	: X													
	0		dy														0		dy .													
	r iv		Æ	d	٢			1									tir	0		1		.1										
	Æ	12	ŢX	= ā	[]24	112	- X)	J	1								ä ŧ	LŻ.	: 7	<u>e</u> Li	24 x		4 12									
				= -2	4(12	-x		1.	¥.						4 m	ete	rs		= -	24	·X	•	ĪŦ									
				= (1;	2-X	2 •	ן-ן ו)							tro	nw				x2	٠(۱.	6)										
	at 1	X=	थ :	y'(4)=	112-	4)2	l-1.	6)								at	x = 8	: 1	'(8)) = -	32	11.6)								
					:	- 24	• · \	ها.													= -	24	• 1.4	,								
					:	- 3	. 8														= -	3.9										
						35	:-(يا.(3 =	-0	ها.								

neight

3. The altitude of a triangle is increasing at a rate of 1 cm/min while the area of the triangle is increasing at a rate of $2 \text{ cm}^2/\text{min}$. At what rate is the base of the triangle changing when the altitude is 10 cm and the area is 100 cm^2 ? (Answer: -8/5 cm/min)

n	given: height changes over time de = 1 area changes over time de = 2	first: find b(t) for h=10,A=100 A=2bh
	asked for: de at h=10, A=100	20 = b
	Area = $A(t) = \frac{1}{2} b(t) \cdot h(t)$ derive: $\frac{d}{dt} (A(t)) = \frac{1}{2} \left[\frac{d}{dt} (b(t) \cdot h(t)) \right]$	second: plug into A'(t) 2= 1/2 b'(t): 10 t 1:20]
	$\frac{d}{dt}(A(t)) = \frac{1}{2} \left[\frac{d}{dt}(b(t))h(t) + \frac{d}{dt}(h(t)) b(t) \right]$	$\frac{1}{2} = 10 \cdot b'(t) + 20$ - le = 10 \cdot b'(t)
	$\beta(t_1) = \frac{1}{2} \left[\beta'(t_1) \cdot \beta(t_1) + \beta'(t_1) \cdot \beta(t_1) \right]$	$-\frac{8}{2} = b'(t)$

4. A boat is pulled into a dock by a rope attached to the bow of the boat and passing through a pulley on the dock that is 1 m higher than the bow of the boat. If the rope is pulled in at a rate of 1 m/s and remains taut, how fast is the angle of depression of the rope changing when the bow of the boat is 8 m from the dock? Note the angle of depression is the angle between the rope and the horizontal.

