Math 10350 – Example Set 07C Section 4.1 Linear Approximation and Applications

1. The population of wolves w(t) and wild boars p(t) in the thousands are given by the equations:

 $w(t) = 3\sin t + 5;$ $p(t) = 2\cos t + 5.$

(a) What is the rate of change of w with respect to p at $t = \frac{\pi}{4}$? (b) Find a relation between w and p by eliminating t. (c) Draw the graph of the p and w relationship in a p-w coordinate plane, (d) Describe what is happening between the two populations as time t progresses. Hint: Input different values of t and trace the curve you drew.

1. Find the tangent line to $f(x) = \sqrt{x}$ at x = 4.

(b) Write down the linearization (linear approximation) of $f(x) = \sqrt{x}$ at x = 4. linearization: $f(x) \approx f'(x_1)(x - x_1) + f(x_1)$ $f'(x) = \frac{1}{2} x^{-1/2}$ $f(x) = \frac{1}{4} (x - 4) + 2$ $f'(u) = \frac{1}{2\sqrt{4}} = \frac{1}{4}$ $= \frac{1}{4} x - 1 + 2$ $f(u) = \sqrt{4} = 2$ $= \frac{1}{4} x + 1$

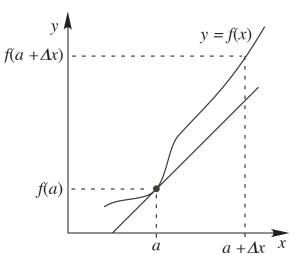
(c) Using your answer in (b), estimate the following values and comment on their accuracy with a calculator:

(i) $f(4.05) \stackrel{?}{\approx} 2.0125$ (ii) $f(3.9) \stackrel{?}{\approx} 1.975$ (iii) $f(5) \stackrel{?}{\approx} 2.25$

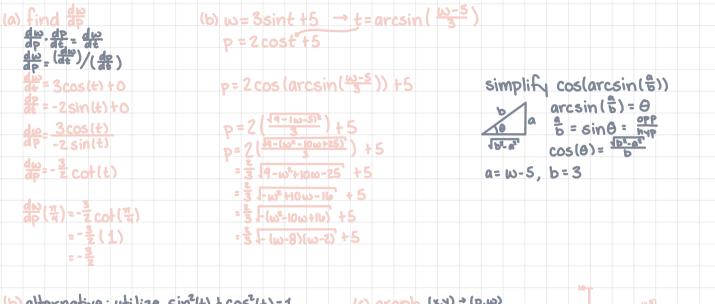
2. Find the linearization (tangent line approximation) of e^x at x = 0. Estimate $e^{0.04}$. Draw a graph to illustrate your estimation. Is your estimate an overestimate or underestimate?

Linear Approximation of change in a function. The linearization of f(x) at x = a is often used in estimating the change Δf of a function f(x) as x changes from a to $a + \Delta x$ is often difficult to compute exactly. Draw in the graph below to show where Δf is.

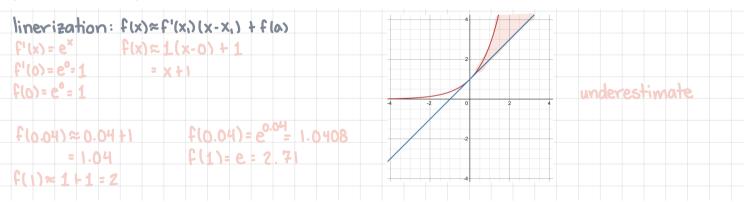
(a) Exact value of $\Delta f = f(\alpha) (\chi - \alpha)$


(b) For small Δx , the linear approximation of f(x) at x = a gives:

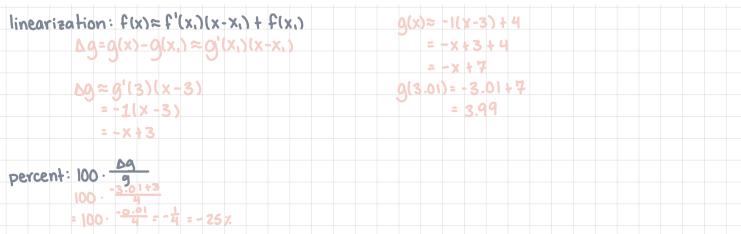
(c) Such estimates for Δf are often used to approximate change and percentage change.


3. (Concept Test) If g(3) = 4 and g'(3) = -1. Estimate Δg and the percentage change of g as x changes from 3 to 3.01. Estimate g(3.01).

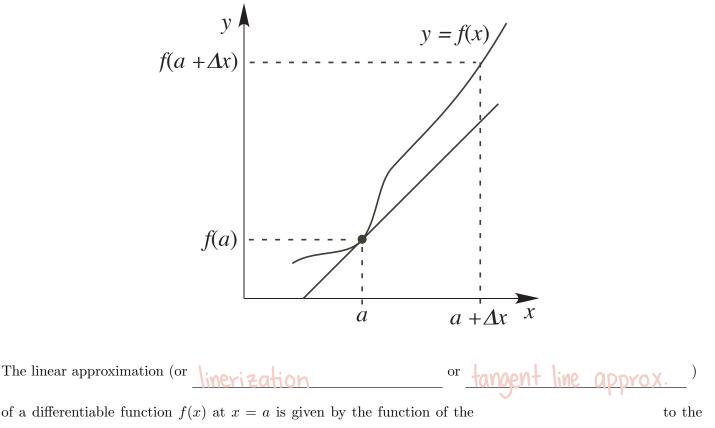
1. The population of wolves w(t) and wild boars p(t) in the thousands are given by the equations:


$$w(t) = 3\sin t + 5;$$
 $p(t) = 2\cos t + 5.$

(a) What is the rate of change of w with respect to p at $t = \frac{\pi}{4}$? (b) Find a relation between w and p by eliminating t. (c) Draw the graph of the p and w relationship in a p-w coordinate plane, (d) Describe what is happening between the two populations as time t progresses. Hint: Input different values of t and trace the curve you drew.



(b) alternative: utilize sin²(t) + cos²(t)=1	(c) araph (x,y) + (p,w)	(3,8) covertex
$w=3sint+5 \Rightarrow sint=\frac{w-5}{3}$	$elipse: \frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$	
$p=2\cos t+5$ = $\cos t=\frac{p-5}{2}$	b vertices: (h t a, k)	(3.5) major (7,5) vertex
	hength of Major axis: Za	mina
$1 = (sint)^{2} + (cost)^{2} = (\frac{w-5}{3})^{2} + (\frac{p-5}{2})^{2}$	Govertices: (h, k=b)	(S,2) covertex
$1 = \frac{1}{4}(w-5)^2 + \frac{1}{4}(p-5)^2$	5 minor axis: 2b	


2. Find the linearization (tangent line approximation) of e^x at x = 0. Estimate $e^{0.04}$. Draw a graph to illustrate your estimation. Is your estimate an overestimate or underestimate?

3. (Concept Test) If g(3) = 4 and g'(3) = -1. Estimate Δg and the percentage change of g as x changes from 3 to 3.01. Estimate g(3.01).

Summary: Linearization of a Differentiable Function at x = a

graph of f(x) at x = a.

 $f(x) \approx L(x) = \frac{f'(a)(x-a) + f(a)}{1 + f(a)}$

this is just the equation of the tangent line at the point (a, f(a)) in a simplified format

(a) Exact value of $\Delta f = f(\alpha + \Delta x) - f(\alpha)$

(b) For small Δx , the change in f(x) as x changes from a to $a + \Delta x$ is given by:

(i) Such estimates for Δf are often used to approximate change and percentage change.