Math 10350 – Example Set 12A

1a. Find the absolute (global) maximum and minimum of $f(x) = xe^{-x}$ on the interval [0.5, 2]. Write down the range of the values of f(x) for $0.5 \le x \le 2$.

1b. Using the steps below, find the global maximum and minimum of $f(x) = xe^{-x}$ on $[0.5, \infty)$.

Step 1: Find all critical points in the domain of f(x) and the values of f(x) there. Classify them using first derivative test.

Step 2: Find the values of f(x) at the end-points (if any) of its domain. Test Included Endpoints $f(0.5) = \frac{1}{2}e^{\frac{1}{2}} = \frac{1}{24e^{-1}} \approx 0.303$

Step 3: If end-point not included, or $\pm \infty$, find all limits of f(x) towards end of interval,

we have to check open ends $\lim_{x \to \infty} xe^{-x} = \lim_{x \to \infty} \frac{x}{e^{x}} \stackrel{\infty}{\sim} L'H$ (parenthesis) because of asymptotes. What if the graph

step 4: Give a schematic sketch (ignore concavity) of the graph of f(x) clearly indicating where the global maximum and minimum are. State the global maximum and minimum of f(x) on $[0.5,\infty)$ if any. Find the range of f(x) for x in $0.5 \le x < \infty$.

range: (0, e] f(1)= e so it is included lim f(x)=0, but we can not say it is included 2. A landscaper plans to use 120 m of fencing and a very wide straight wall to make two rectangular enclosures with the same dimensions as shown.

a. Write down the possible values of x.

b. Find the maximum value of the total area of the enclosures. What are the dimensions of each enclosure when maximum occurs? Test end points: $x=0 \Rightarrow A=0$, $x=40 \Rightarrow \omega=0 \Rightarrow A=0$ Note that if x=0 or $\omega=0$ then A=0 $A=x(2\omega) \Rightarrow A=2x(\frac{120-3x}{2})=120x-3x^2 \Rightarrow \frac{dA}{dx}=120-6x \Rightarrow 0=120-6x \Rightarrow x=20$ A(20)= $120(20)-3(20)^2$ 3. The top and bottom margins of a poster are each 6 cm and the side margins are each 4 cm. If the area of =1200

