Warning: If the domain is closed bounded we must test endpoints!

1. A cylindrical can without a top is made to contain 100 cm^3 of liquid. Find the dimension that will minimize the cost of the material to make the can if the material for the side costs $2/\text{cm}^2$ and the material for the base costs $3/\text{cm}^2$.

2. Find the area of the largest rectangle that can be inscribed in a right triangle with legs of lengths 3cm and 4cm if two sides of the rectangle lie along the legs.

3. Show that of all the isosceles triangles with a perimeter of 30 cm, the one with the largest area is equilateral.

Step 1: Minimize Cost 1. Plug in constraint constraints Volume = $\pi r^2 h = 100^{\circ} \implies h = \frac{100}{\pi r^2}$ _____ Step 0: domain r=0 implies Surface = sides + bottom r=@ implies 1=0 contra n=0 implies Area 1=0 con trad = (circumference). height + bottom area tion $= (2\pi r) \cdot h + \pi r^2$ Cost = (side cost)(side surface) + (bottom cost)(bottom cost) $= (2)(2\pi rh) + (3)(\pi r^2)$ Set dr=0 $= 4 \pi r \left(\frac{100}{\pi r^2} \right) + 3 \pi r^2$ $C = 400 \frac{1}{5} + 3\pi r^2$ maximize A= X·N +6πr =0 constraint y=-3 x+3 6**π**r= <u>4</u> →DNE r=O would not Plug in constraint $b\pi r^{3} = 400$ give V= 100 $A = \chi(-\frac{3}{4}\chi + 3)$ x=0 implies x=4 implies $r^3 = \frac{200}{2\pi}$ out of domain v=0 implies $-3x^{2}+3x$ Area would then be maximize $\frac{dA}{dx} = 0$ zero which is okay x +3 =0 but not maximal $3 = \frac{3}{7} \times$ Step 2: Included End Points 2=× Step 3: End Behaviors max area A(0)=-3(0)²+3(0)=0 $\lim_{t \to 0} \frac{1}{r} + 3\pi r^2 = 0 + 0 = 0$ x = 2 $=-\frac{3}{2}+3=\frac{3}{2}$ A(4)=-3(4)²+3(4)=0 5-30 Max area $\lim_{t \to 0} 400 \frac{1}{r} + 3\pi r^2 = 0 + 0^{\circ} = 0^{\circ}$ 3 x = 3 cm r->00

3. Show that of all the isosceles triangles with a perimeter of 30 cm, the one with the largest area is equilateral.

	isoscele	es triana	le: two	sides an	e the so	me	
	agu: lata				t side la		have manifed at
	equinate	rai mana	jie: sam	le angles	7510e 1	ength	box memoa:
h				straigh	h ling	s in half	× 30-21
	$h = \sqrt{2}$	(žý		domai	n: ÖENS	-15	30 900 - 601
×					Y.		-21 -10 +412
Given: x+2	= 30 -			x = 30-2			
	16000	baight)		N 120	2.1.1.5	2 + 120 -7	2 1/2 multiple
HYEU - 2	(Duser)	TEGIT		R- 2130	-24114	- 4 150-2	Mumple
=	$X \cdot 1^{z} - 1$	ž) ^z		= (15-1	ן)(ע ² - <u>ק</u> (מ	100 - 120 y t	(4) ²) ¹² chain rules
				= (15-1)	$11^{2} - 225$	$+30y - y^{2})$	1/2
Maximize Area	2			= (15-4)	· 130-22	5) ^{1/2}	
$\frac{dA}{dx} = (-1)(30x - 22)$	5)1/2 + + + (30 - 225	2 (30) (15-	-y)		N domai	$n: 7.5 \le x \le 15$
0 = -120 + 226		120 - 2	265-112		-> DAIE	30 775	≤ 0 as possible in
	(15)(15-)	411304-2	231	.119	DIVC	504-225.	- O no negatives in
0=- 130y -225)	+ 15(15-	1) multipl	ied by 13	0-225)"	<u>301</u> 4	225	square roots
0=-30++225+	225 - 15				v ≤ 7.	5	
0 = 450 - 45							
45 1 = 450							
N + 10							
76				N A a a a			

when $v = 7.5$	when $y = 10$	Maximums happen when f'(x) goes
x + 2(7.5) = 30	x + 2(10) = 30	from positive to negative. Normally
x +15 = 30	x + 20 = 30	we would test a number to the left
x = 15	x = 10	and right, but y=7.5 is undefined.

Included End points

A(7.5)= (15-7.5) 30(75)-225= (7.5) 255-255 = 0

A(15) = (15-15) J30(15)-225 = 0. J450-225 = 0

```
dimensions of isosceles triangle with maximum area is y=10, x=0
i.e. an equilateral triangle
```