Math 10350 Example Set 13B

► Antiderivatives (Reversing differentiation – Section 4.9)

Definition: We say that F(x) is an **antiderivative** of f(x) provided F'(x) = F(x).

Example 1 Verify that $x^2 + 5$ is an antiderivative of 2x. Can you write down a few more antiderivative of 2x? What did you notice? Explain graphically.

We are looking for functions that derivative is 2x. We know that the derivative of x^2 is 2x. What can we add to x^2 $F(x) = x^2 + 5$ F'(x)=2x=f(x)F'(x) = 2x = f(x)that the derivative of x is called in the derivative? i.e. what's derivative is zero? $2x^2$? $x^2 + x$? $x^2 + z$? Remark: We denote the family of antiderivatives of 2x by $x^2 + c$; $c \in \mathbb{R}$. From Example 1, we see that c is a real

From Example 1, we see that

Theorem: If F(x) and G(x) are antiderivatives of the same function throughout an interval, then they differ by a constant c over that interval; that is, for a < x < b $F'(x) = G'(x) \iff F(x) = G(x) + C$ for some number C.

Notation: If F(x) is an antiderivative of f(x), that is, F'(x) = f(x). Then we may write

 $\int f(r)dr = -$

We call
$$\int f(x)dx$$
 the indefinite integral what can **I** take the *T* you can always check your derivative of to get *x*? So you can always check your derivative of the get *x*? So you can always check and *x*? Intervative of the get *x*? So you can always and there in the finite integral formula. So you can always and there in the finite integral formula intervative of the get *x*? So you can always and there in the finite integral formula for a near constant whether a near constant is so you can always and there in the finite integral formula formula for a near constant is always and there in the finite integral formula formula

1. Evaluate the following indefinite integrals:

a.
$$\int (1 + e^{2x} + e^2 + 3x - x^2) dx$$

b.
$$\int \frac{2u^2 - 5u + \sqrt[3]{u}}{u^2} du$$

$$= \int 2 - \frac{5}{u} + \frac{u^{1/3}}{u^2} du$$

$$= \int 2 - 5u^{-1} + u^{5/3} du$$

$$= \int 2 - 5u^{-1} + u^{-5/3} d$$

$$f(x) = (e^x + 1)^2;$$
 $F(0) = 3$

In other words, solve the initial value problem:

$$\frac{dF}{dx} = (e^{x} + 1)^{2}; \quad F(0) = 3$$
Step 1: antiderivative
$$f(x) = (e^{x} + 1)^{2} \leftarrow we \text{ do not know}$$

$$= e^{2x} + 2e^{x} + 1 \quad how \text{ to do if from}$$

$$F(x) = \frac{1}{2}e^{2x} + 2e^{x} + x + c$$

$$F^{1}(x) = e^{2x} + 2e^{x} + 1$$

$$F(x) = \frac{1}{2}e^{2x} + 2e^{x} + 1$$

$$F(x) = \frac{1}{2}e^{2x} + 2e^{x} + x + c$$

$$F^{1}(x) = e^{2x} + 2e^{x} + 1$$

$$F(x) = \frac{1}{2}e^{2x} + 2e^{x} + 1$$

$$F(x) = \frac{1}{2}e^{2x} + 2e^{x} + x + c$$

$$F^{1}(x) = \frac{1}{2}e^{2x} + 2e^{x} + 1$$

$$F(x) = \frac{1}{2}e^{2x} + 2e^{x} + 1$$

3. A ball is projected upward from the ground with an initial velocity of 3 m/sec. Using calculus, write the velocity and position for the ball at time t. You may assume that the acceleration due to gravity is 10 m/s^2 .

gravity initial velocity from ground bits t=0		This is secretly <u>two</u> initial value problems Recall: s(t)= position
Initial value Problem 1: Step 1: antiderivative	Initial value Problem 2: Step 1: Antiderivative	v(t)= s'(t)= velocity a(t)= s"(t)= acceleration
v(t) = 10t + c	$S(t) = 5t^2 + 3t + C$	Check:
Step 2: Solve for C 3 = N(0) = 10(0) + C 3 = C	Step Z: Solve for C 0 = s(0) = 5(0) ² +3(0) + C 0 = C	$s(t) = 5t^2 + 3t$ v(t) = s'(t) = 10t + 3 a(t) = s''(t) = 10
Step 3: Plug in c V(t) = 10t + 3	Step 3: ring in c $S(t)=5t^2+3t+0$	