Inverse Trigonometric functions

how these relate?

Trigonometric Representation

Now that was great visually , but could you tell me derivative of arcsin(x) ? Probably not from this alone. So we go back to triangles-math's best friend.

Let us recall geometrically what sine means and then infer its inverse. Let us recall geometrically what sine means and then infi
We start with a triangle with hypotenuse of length 1.

 $\frac{1}{\sqrt{1-\frac{1}{2}}}\left(\frac{1}{\sqrt{1-\frac{1}{2}}}\right)$! !

Exit Ticket Natural Log

Fill in the following rules: 1. $ln(a) + ln(b) = ln(ab)$ 3. $ln(x^a) = \mathbf{Q} \cdot ln(x)$ 4. $ln(\mathbf{Q})$ $a \cdot \ln(x)$ 4. $\ln(ax^b) = \ln(a) + b \ln(x)$ 5. $\frac{d}{dx}$ [ln(*ax* + *b*)] = $\frac{1}{a}$ $\frac{1}{a}$ $\frac{a}{a}$ 6. $\int \frac{a}{a x}$ $\frac{1}{ax+b} \cdot a$ 6. $\int \frac{a}{ax+b} dx = \ln|ax+b| +C$ 2. $\ln(a) - \ln(b) = \ln\left(\frac{a}{b}\right)$

Use the above rules to solve the following equations for x:

ˆ 1 2*x* + 5 1. *dx* ^ˆ ¹ *x* + 12 2. *dx* u ⁼ 2x+5 ⁼ E(n(2x +5) ⁺ ^c ⁼ (n(x ⁺ 12) ⁺ ^C

3.
$$
\frac{d}{dx} \left[\ln \left(\frac{1-x}{1+x} \right) \right]
$$

\n
$$
= \frac{d}{dx} \left[\ln \left(1-x \right) - \ln \left(1+x \right) \right]
$$

\n
$$
= \frac{d}{dx} \left[\ln \left(2x^2 - 3 \right) + \ln \left(3x^3 - 6 \right) \right]
$$

\n
$$
= \frac{d}{dx} \left[\ln \left(2x^2 - 3 \right) + \ln \left(3x^3 - 6 \right) \right]
$$

\n
$$
= \frac{d}{dx} \left[\ln \left(2x^2 - 3 \right) + \ln \left(3x^3 - 6 \right) \right]
$$

\n
$$
= \frac{d}{dx} \left[\ln \left(2x^2 - 3 \right) + \ln \left(3x^3 - 6 \right) \right]
$$

5.
$$
\int \frac{2x}{4x^2 + 12} dx
$$

\n $u = 4x^2 + 12$
\n $du = 8 \times dx$
\n $= \int \frac{1}{u} \cdot \frac{1}{u} du$
\n $= \int \frac{1}{u} \cdot \frac{1}{u} du$
\n $= \frac{1}{u} ln |u| + c$
\n $= \frac{1}{2} ln |u| + c$

Produced by Audriana Houtz, Mathematics Ph.D. student at the University of Notre Dame.