Week03: Febuary 27th 2023

Section 6.1: Area Between Curve

I.

b

'y= 3X

y=x3-x

fixs

I

I

-

I.

0

4

Assuming that f(x) > g(x) for a < x < b, find the area between the curves y = f(x) and y = g(x). O Breaking down the picture

Ì

. 6

4

1 1 I. I + | I g (x) . g (x) q (x) 4 T

b

fixs

L

Area between the	Area between the	Area between the
graph of f(x) and	graph of g(x) and	graph of f(x) and the
the x-axis is given	the x-axis is given	graph of q(x) is given
by S. f(x) dx	by So gix) dx	by Jof(x) dx - Jog(x) dx

example. Find the area enclosed by the graphs of $y=x^3-x$ and y=3x.

Area between the curves= Sol(f(x)-g(x)) dx	$\int_{-2}^{0} (x^3 - x) - (3x) dx + \int_{0}^{2} (3x) - (x^3 - x) dx$	
where f(x) is the "top" function and	$= \int_{-2}^{0} x^{3} - 4x dx + \int_{0}^{2} -x^{3} + 4x dx$	
g(x) is the "bottom" function.	$= \frac{1}{4} x^{4} - 2x^{2} \int_{-2}^{0} + \frac{1}{4} x^{4} + 2x^{2} \int_{0}^{2}$	
But! Here they switch "top" and "bottom"	=[+(0)"-2(0)" - (+(-2)"+2(-2)]+[+(2)"+2(2)"+2(2)"+2(2)"+2(0)"+2(0)")]	
so we must split our integral where they	= 0 - 0 - 4 + 8 - 4 + 8	
swap positions x=0.	= 8	

i

1

۵

I.

b

fixs

Section 6.2: Volume of a solid with Uniform Cross-section

You can use the definite integral to find the volume of a solid with specific cross sections on an interval, provided you know a formula for the region determined by each cross section. If the cross sections generated are perpendicular to the x-axis, then their areas will be functions of x, denoted by A(x). The volume (v) of the solid on the interval [a,b] is V= So A(x) dx. Similarly, if the cross sections are perpendicular to the y-axis, then their areas will be functions of y, denoted by A(y). In this case, the volume (v) of the solid [a,b] is V= So A(y) dy.

example. Find the volume of the solid shown below by integrating the area of vertical cross-section perpendicular to the x-axis.

Area of cross section $(\Delta) = \frac{b(x) h(x)}{2}$ $V = \int_0^3 A(x) dx$ 3 $= \int_{0}^{3} \frac{4}{9} (3-x)^{2} dx$ b=b(xo) $\frac{2}{3} = \frac{b(x_0)}{3-x_0}$ **b(x**₀) $=\int_{0}^{3}\frac{4}{9}(9-6x+x^{2})dx$ By similar D's NLXO) $= \frac{4}{4} \left[9_{x} - 3_{x}^{2} + \frac{1}{3} x^{3} \right]_{0}^{3}$ b(x0)= = 3(3-x0) $= \frac{1}{4} \left[q_{(3)} - 3(3)^{2} + \frac{1}{3} (3)^{3} - (0 - 0 + 0) \right]$ 2 Y $\frac{h(x_0)}{4} = \frac{3-x_0}{3}$ B = 4 [27 - 27 + 9] Similarly left wall bottom 6(x0) = 4 [9] $h(x_0) = \frac{4}{3} (3 - x_0)$ X = 4 $\frac{b(x) \cdot h(x)}{2} = \frac{\frac{2}{3}(3-x) \cdot \frac{4}{3}(3-x)}{2}$ Areald)= $=\frac{8/9(3-x)^2}{2}$

 $=\frac{4}{9}(3-x)^{2}$

example. Consider a solid whose base is the region bounded by the lines $y = x^3$, y = 8, and the y-axis. Find the volume of the solid in each of the following cases:

- a. The cross sections perpendicular to the y-axis are squares.
- b. The cross sections perpendicular to the y-axis are rectangles of height Jy.
- c. The cross sections perpendicular to the y-axis are semicircles.

a. The cross sections perpendicular to the y-axis are squares.

			2	Aly)= Area of cross-section at y	$V = \int_{0}^{8} v^{2/3} dv$
			~ ~ ~ ~	= Area of square with side By	$= \left[\frac{1}{2/3+1} \sqrt{\frac{2}{3}+1} \right]_{0}^{8}$
			2 2	$= (B_N)^2$	$= \left[\frac{1}{5/3} \sqrt{\frac{5}{3}} \right]_{0}^{8}$
V	By	(x,x3) = (87,4)		= (IT) ²	$= \begin{bmatrix} \frac{3}{5} \\ \frac{5}{3} \end{bmatrix}_{0}^{8}$
				= 12/3	$=\frac{3}{5}(8)^{5/3}-(0)^{5/3}$
	l l		By /		$=\frac{3}{5}(8^{1/3})^5$
	i			By= Base of cross-section when cutting at y	$=\frac{3}{5}(2)^{5}$
			BN	when cutting at y	= 3/5 (32)
					= 40

b. The cross sections perpendicular to the v-axis are rectangles of height Jy.

	= (y)A	Areo	of	cro	ss-	sec	tior	at	7								<u>[8</u>	<mark>الا</mark> م	dy		
2	=	Area	x of	re	ctav	ngle	wi	th '	base	<u>.</u> रा	1 av	nd r	neigl	nt J	7		= 5	1 16+1	5/6	,+1]	B a
		শ্ য	57														= 11	1 16 Y	11/6]	8	
	5	1/3	V/Z														= 6	4) N	•]8		
	=	5/ N	6														= 6	8"	- 0	"/")	
																	= <mark>\</mark>	(8)	16		
BN /																					

c. The cross sections perpendicular to the y-axis are semicircles.

A	realy)=	Area	of	cros	55-6	ect	ion	at.	4				V=	S° 18	πγ	13 dy			
	2	Area	of	ser	nici	rcle	of	dia	ime	ter	Bx			ģπ	$\left(\frac{1}{2/3}\right)$	ן דו ע	1341]&	
	=	Area	of	sew	nicir	cle	of	dia	met	er ?	5						³)]8		
	=	눈(늡	π(৶৵৾৾৾)								=	<u>ι</u> 8 π		5/3 N)]8		
	5	18 π	7/3 V										1	<u>3</u> 40	π(8	5/3_	5/3)		
													=	340	π(8	\$/)			

Section 6.2: Density

By

Every continuous radom variable, X, has a probability density function, p(x). Probability density functions satisfy: (i) $p(x) \ge 0$ for all x (ii) $\int_{-\infty}^{\infty} p(x) dx = 1$

Probability density functions can be used to determine the probability that a continuous random variable lies between two values, say a and b. This probability is denoted by $P(a \le x \le b)$ and is given by, $P(a \le x \le b) = S_{a}^{b} p(x) dx$.

example. Find the total mass of a 5 meter rod whose linear density is given by p(x)= (1+e*)? gim for 0=x=5

mass = $\int_{0}^{5} \rho(x) dx = \int_{0}^{5} \frac{e^{x}}{(1+e^{x})^{2}} dx$ $u = 1+e^{x} du = e^{x} dx$ $u = 1+e^{x} du = e^{x} dx$ $u = \int_{2}^{1+e^{5}} \frac{1}{u^{2}} du$ $u = \int_{2}^{1+e^{5}} \frac{1}{u^{2}} du$ $u = -u^{-1} \int_{2}^{1+e^{5}} \frac{1}{2}$

example. A variety of deep sea worm is distributed about a hydrothermal vent according to the population density $p(r) = \frac{300}{9tr^4}$ thousand per square miles where $1 \le r \le 3$ is the distance (in miles) from the tent. Find the total population of the sea worm.

Total worms on the circle of radius $r = p(r) \cdot perimeter of the circle = p \cdot (r) \cdot circumference of circle of radius r.$ $Total population = <math>S_i^3$ (worms in circle of radius r) dr

> $= \int_{1}^{3} \rho(r) \cdot 2\pi r dr$ = $\int_{1}^{3} 2\pi r \left(\frac{800}{9+r^{2}}\right) dr$ $u = 9+r^{2} du = 2rdr$ = $\int_{10}^{18} 800\pi \left(\frac{1}{4}\right) du$ = $800\pi \ln |u| du$ = $800\pi (\ln |18| - \ln |10|)$ = $800\pi \cdot \ln \left|\frac{9}{3}\right|$

6.2: Average of a Function

The average of a continuous function f(x) over the interval [a,b] is given by, $f_{avg} = \frac{1}{b-a} \int_{a}^{b} f(x) dx$.

example. Find the average amount of money over the first 10 years in an account earing interest at an annual rate of 4% compounded continuously if the principle is \$5000. Draw a graph of the balance in the account and mark the value that represents the average amount of money. Find the time it takes the account to reach this average.

Step 1: Set up average	Step 2: Draw a	graph	Step 3: S	olve average
fang= b-a So A(t) dt			Favg = to S	6000 e ^{0.04 t} dt
Alt)= poett			= 50	$00\int_{0}^{10}e^{0.04t}dt$
Po = 5000			= 50	$00 \cdot [e^{0.04t} \cdot \frac{1}{0.04}]^{10}$
r = 0.04				500 [e ^{0.041}]
forg= 10 \$ 5000 e0.04t dt				500 (e ^{0.04.10} -e ^{0.04.0})
	0	1D	= 12	500 (e ^{0.4} -1)

Step 4: Solve for T such that A(T) = farg5000 $e^{0.04T} = 12500 (e^{0.4} - 1)$ $e^{0.04T} = 2.5 (e^{0.04} - 1)$ $\ln(e^{0.04T}) = \ln(2.5 (e^{0.04} - 1))$ $0.04T = \ln(2.5 (e^{0.04} - 1))$ $T = \frac{1}{0.04} \cdot \ln(2.5 (e^{0.04} - 1))$