Week03: Febuary 27th 2023

Section b.1:Area Between Curve

-

 -2 $\sqrt{1-x^3}$

f(x)

Assuming that f(x)>g(x) for a<x<b, find the area between the curves y=f(x) and y=g(x). ^①Breaking down the picture

$f(x)$ and $y=g(x)$. ***

example. Find the area enclosed by the graphs of $y=x^3-x$ and $y=3x$. $x + 1$
 = 3x

Section 6.2: Volume of a solid with Uniform Cross-section

You can use the definite integral to find the volume of ^a solid with specific cross sections on an intervals provided you know a formula for the region determined by each cross section. If the cross sections generated are perpendicular to the x-axis, then their areas will be functions of x, denoted by A(x). The volume (v) of the solid on the interval $[0, b]$ is $v=$ s_{a}^{b} Acx)dx. Similarly, if the cross sections are perpendicular to the y-axis, then their areas will be functions of y, denoted by A(y). In this case, the volume (v) of the solid ca, bJ is $V = S_a^b$ A(y) dy.

example. Find the volume of the solid shown below by integrating the area of vertical cross-section perpendicular to the x -axis.

 R 4 $\frac{1}{3}$ $\frac{1}{1}$ $\frac{1}{2}$ Area of cross section (A) = $\frac{b^{(x)}h^{(x)}}{2}$ V= $V = \int_0^3 A(x) dx$ = $=$ $\int_{0}^{3} \frac{4}{9} (3-x)^{2} dx$ $\frac{1}{2}$ b= $b=b(x_0)$ B_4 similar Δ 's $\frac{z}{3} = \frac{b(x_0)}{3-x_0}$ $=\int_{0}^{3} \frac{4}{9} (9 - 6x + x^{2}) dx$ D $n(x_0)$ b(x0= $b(x_0) = \frac{2}{3}(3-x_0)$ $=\frac{4}{9}\left[9x-3x^{2}+\frac{1}{3}x^{3}\right]_{0}^{3}$ $= 4(3) - 3(3) + \frac{1}{3}(3)^{3} - (0 + 0 +$ \mathcal{N} , and the set of \mathcal{N} and $\frac{1}{2}$ $\frac{1}{9}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{9}$ $\frac{1}{13}$ $\frac{1}{3}$ $\frac{1}{16}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{2}$ $\overline{\mathbf{y}}$ B 2 0 $\frac{1}{3-x_0}$ 3 5 m $\frac{h(x_0)}{x_0}$ $\frac{3-x_0}{x_0}$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{8}{5}$ $\frac{2}{3-x_0^3}$ Similarly: $\frac{h(x_0)}{4}$ $\frac{3-x_0}{3}$ = $\frac{4}{4}$ $\frac{27}{27}$ + 9] $\frac{1}{x_0^{3}}$ Similarly,: $\frac{h(x_0)}{y} = \frac{3}{3}$ \mathbf{z}_3 $b(x_0)$ bottom left wall $h(x_0) = \frac{4}{3}(3-x_0)$ $= \frac{4}{9}$ [9] $h(x_0) = \frac{1}{3}(3-x_0)$ $= 4$ $rac{b(x).h(x)}{2} = \frac{2}{3}(3-x) \cdot \frac{4}{3}(3-x)$ $Area(\Delta) = \frac{2}{2} = \frac{3\sqrt{2}}{2}$

 $=\frac{8/9(3-x)^2}{2}$

 $=\frac{4}{9}(3-x)^2$

example. Consider a solid whose base is the region bounded by the lines $y = x^3$, $y = 8$, and the y-axis. Find the volume of the solid in each of the following cases:

- a. The cross sections perpendicular to the y-axis are squares.
- b. The cross sections perpendicular to the y -axis are rectangles of height \sqrt{y} .
- C. The cross sections perpendicular to the y-axis are semicircles.

a.The cross sections perpendicular to the y-axis are squares.

b. The cross sections perpendicular to the y -axis are rectangles of height \sqrt{y} .

C. The cross sections perpendicular to the y-axis are semicircles.

Section 6.2: Density

N.

Every continuous radom variable, X,has a probabilitydensityfunction, p(x). Probabilitydensityfunctions satisfy: (i) $p(x) \ge 0$ for all x (ii) $\int_{-\infty}^{\infty} p(x) dx = 1$

Probability density functions can be used to determine the probability that a continuous random variable lies between two values, say a and b. This probability is denoted by $P(a \le x \le b)$ and is given by, $P(a \le x \le b) = \int_{a}^{b} p(x) dx$.

example. Find the total mass of a 5 meter rod whose linear density is given by $\rho(x)$ = (ite β gim for 02x25)

mass = $\int_{0}^{5} \rho(x) dx = \int_{0}^{5} \frac{e^{x}}{(1 + e^{x})^{2}} dx$ $u=1+e^x$ du= e^x dx $=\int_{2}^{\pi e^{5}} \frac{1}{u^{2}} du$ $=$ \int_{2}^{π} u^{-2} du $= -u^{-1} \int_{2}^{\pi} e^{5}$ $=$ $-[(1 + e^5)^{-1} - (2)^{-1}]$ $=$ $\frac{-1}{2}$ $\frac{1}{2}$ $=$ $-\left[\left(\sqrt{1+e^{5}}\right)^{-1}\right]$
= $\frac{-1}{1+e^{5}} + \frac{1}{2}$

example. A variety of deep sea worm is distributed about a hydrothermal vent according to the population density example. In variety of deep sea worm is aistributed about a hydrothermal vent according to the population density
 $\rho(r)$ = $\frac{800}{1}$ thousand per square miles where 14r43 is the distance (in miles) from the tent. Find th of the sea worm.

Total worms on the circle of radius $r = \rho(r)$ perimeter of the circle = $\rho(r)$. circumference of circle of radius r. Total population= S_1^3 (worms in circle of radius r) dr

> $=$ S_1^3 p(r). 2 πr dr $= \int_{0}^{3} 2\pi r \left(\frac{800}{9+r^{2}} \right) dr$ u= atr^z du= 2rdr = u= atr^z du= 2rdr
= S¹⁸ 800 T (j) du $=800\pi$ Inlul du $=800 \pi (ln||B| - ln||0|)$ $=800 \pi \cdot ln\left(\frac{9}{5}\right)$

<u>Lo.2: Average</u> of a Function

The average of a continuous function $f(x)$ over the interval (a,b] is given by, fang = b-a $\int_{a}^{b} f(x) dx$.

example. Find the average amount of money over the first to years in an account earing interest at an annual rate of 4% compounded continuously if the principle is \$5000. Draw a graph of the balance in the account and mark the value that represents the average amount of money find the time it takes the account to reach this average.

Step 4: Solve for T such that $A(T)$ = farg $5000 e^{0.04T} = 12500 (e^{0.4} - 1)$ $e^{0.047}$ = 2.5 ($e^{0.04}$ -1) $\ln(e^{0.04\tau}) = \ln(2.5(e^{0.04}-1))$ $e^{\cos \theta} = 2.51e^{\cos \theta} - 1$

n($e^{\cos \theta} = \ln(2.51e^{\cos \theta} - 1)$

0.04 = $\ln(2.51e^{\cos \theta} - 1)$

T = 0.04 : $\ln(2.51e^{\cos \theta} - 1)$