Preo Behween Curves

Area under a curve

Recall the Riemann sum definition of e integyal
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The integral adds up the area behween the curve and e x-oxis Yoy summing
up little vectangles. How might one add up the area between two curves?

Area between cunles
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Note Hhat is important fhat Fu) is the "top" function and gx) is always below it.
For each rectangle the height has a distance of Fix)-g(x).

Examplest
1. Find the area enclosed by the graphs of y=xX-x and y=3x.

' | Our first instict is 4o do:
- = 3x .
C-Ux =0 S.z(\—oP -bottom)dx
x(x*-4)=0
x(x-2)(x+2) =0 But which funclion is e
X=-2,0,2 "fop" funchion?




We run into an issue when trying to define the height of our rectangles. For
some x's y=x*-x is larger than \=3x and for other x values they
switch. Our area formula only works when one finction is always the
"“top" funclion.

The fix is to split the graph into Z vegions and iMegrde over each region.
The first region -2¢x<0 has y=x>-x"as the"top” function and y=3x as
tre “botom: We can now apply the area formula Yo -2¢x<0. Similarly, the
second region has & “top’ and "bottom’ finchion. We can combined them
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Areo = A+ Az = S.:(x’-x%(:*,x) dx + So (3x) - (>-x) dx
= sz XC-X-3x dx . S: 3x -+ X dx
= §% 3% Ux dx v 5o ~® +dx dy
- [ax*247% v Faxirae]?
<[aoy- 20']- (3 102127+ [y v 20207 - i) 1 200Y ]
=[0-07 - (50w -2y ] # (506 + 2(4)) - [0 +0]
= -[y-8]+(-4+g]
=-[-41+ (4]
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A note on Yop and boltom funclions:

£ \ou ever switch Nour top and bottom functions you will get o negative

oven: A=y Flx) -gx d
= f2r1(-fi0t gl) dx | TF I ever get a negofive area but know that
a1 (g(x) - £1x)) dx one is always e q'op funchion, then T just
EIN gLx) - Flx) dx oosolute value wvy onswer.

Volume of a Solid with Uniform Cross-section

We con use similar reasoning Yo set up volume formula for shapes
with uniform cross-sections (or slices). T ¥he cross-sechions are
perpendicular Yo the x-oxis, then the aveo of the cross-section will be
functions of x determined by ¥heir 2D shape and denoted AL). The volume
of such a solid will add up all of e shices along some. vange a¢x<b and be
calculated using N=Ja AL dx. As o Riemann sum s is N= Ay ox where
bx is some tiny width and AL is the cross-section. Similarly, if the cross-
sechons are perpendicular to ¥he y-axis, we get area funclion Aly), a
range of inkegrotion asy b, and a volume formula V= §2 AW dy.



Exomple:

2.Consider a solid whose Yase is the region bounded by the lines y= X3 =8,
and the y-axis. Find the volume of the solid in each of e following cases:
a. The cvoss-sechions perpendicular to the \-oxis ave squores.

b. The cross-sechons perpendiculor to the y-axis ave vectangles of heighl
c. The cross sechons perpendicular ‘o the y-axis ave gemicivcles.

0. The cvoss sechions pevpendicular Yo the N-oxis ave squares.

ALY = Area of cross-seckion at y
; = Aveo of square with side By
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b. The cross sechons perpendicular to the y-oxis ave vectangles of
he,isVﬂ- N
Ay = Avea of cross-section at §
= Area of rectangle with base N and height §
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c. The cross sechons perpendicular to the y-axis ave gemicivcles.
/[ \ Prealy) = Avea of cross-section at v

= frea of semicircle of diameter Bx

= Area of semicircle of diameter N

= z7r° where v= 3 (AN
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Exit Ticket Inverse Trigonometric Functions

Fill in the derivatives and integrals:

d
1. o [arcsin(z)] = 2.

d
3. . [arctan(z)] = 4. /

Use the rules above to find the integrals below:
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