Area Between Curves

Area under a curve			
Recall the Riemann sum d	efinition of the int	regral:	
lo fixed	$x = \hat{\Sigma} f(x,) \Delta x$		
	height of wi	dth of	
Q. 10	rectangle rec	:tangle	
The integral adds up the a	rea between the	curve and the	x-axis by summing
up little rectangles. How r	night one add up	the area bet	ween two curves?
Area between curves			
Assuming that f(x) > a(x) for	asxsh, the area be	tween the curr	ues u= f(x) and u= a(x) is:
· · · · · · · · · · · · · · · · · · ·		fues	, , , , , , , , , , , , , , , , , , ,
g(x)		g(x)	g(x)
	A D		
Area between the	Area between t	he	Area between the
graph of f(x) and	graph of g(x) a	nd	araph of f(x) and the
the x-axis is given	the x-axis is give	en	graph of a (x) is given
by Sof(x) dx	by So gix) dx		by Jof(x)dx - Jog(x)dx
Note that is important th	nat f(x) is the "top	»" function and	l a(x) is always below it.
For each rectangle the hei	ght has a distan	ce of f(x)-g((x).
Examples:			
1 Find the even male and h		- v ³ v and	.
I. PIVIA THE AREA ENCIOSEA C	A the graphs of A		
Find intercepts:		Our first in	nstict is to do:
$x^{3}-x=3x$		~~~~	
$x^3 - 4x = 0$	2-	J-z(top -bc	sttom)dx
x(x ² -4)=0			
x(x-2)(x+2) =0	A-2 V=X3-X	But which .	tunction is the
x=-2,0,2	-4-	"top" funct	ion?
V=3×	-6-		

We run into an issue when trying to define the height of our rectangles. For some x's $y=x^3-x$ is larger than y=3x and for other x values they switch. Our area formula only works when one function is <u>always</u> the "top" function.

The fix is to split the graph into 2 regions and integrate over each region. The first region $-2 \le x \le 0$ has $y = x^3 - x$ as the "top" function and y = 3x as the "bottom". We can now apply the area formula to $-2 \le x \le 0$. Similarly, the second region has a "top" and "bottom" function. We can combined them to get:

																		r'in	n DC	rte	ant	r h	ere
Ar	ea	11	Α,	+	Az	=)z(x3	x)	- (3	x)	dx	ł	ſ	(3	Sx)	- (х ³ -	x)	d×			
						= {	0 -z)	(³ -	x -3	3x	dx		+	ls	Зх	(-)	(3+	x	dx				
						= 5.	z X	3	4x	dx			ł	\int_0^2	~x	3 + (4x	dx					
						= [μx	"- 2	X]°_z			+	[-ដ	i X ⁴	+ 2	x²]	2 0					
						=[;	104	- 210	»]-	<u>Eti</u>	-2)4-	21-2)°]+	+[-;	¦[z`	4) + 7	2(2)]-	[-4	(0) ⁴	+2(58]	
						= [0 -	0]	- [िंध	16) -	2(4	<u>۱</u>	• [•	<u><u></u> <u></u> <u></u> <u></u> <u></u></u>	,) +	2(4	1)] ·	-[0	+()]		
						: -	[4	- 8]+	[-4	1+8]											
							٤-	4]	+ (4]													
						= 4	+ 4	1															
						_ Q																	

A note on top and bottom functions: If you ever switch your top and bottom functions you will get a negative area: $A = \int_{a}^{b} f(x) - g(x) dx$ $= \int_{a}^{b} -1(-f(x) + g(x)) dx$ If I ever get a negative area but know that $= \int_{a}^{b} -1 (g(x) - f(x)) dx$ one is <u>always</u> the top function, then I just $= -\int_{a}^{b} g(x) - f(x) dx$ absolute value my answer.

Volume of a Solid with Uniform Cross-section

We can use similar reasoning to set up volume formula for shapes with uniform cross-sections (or slices). If the cross-sections are perpendicular to the x-axis, then the area of the cross-section will be functions of x determined by their 2D shape and denoted A(x). The volume of such a solid will add up all of the slices along some range $a \le x \le b$ and be calculated using $V = \int_{a}^{b} A(x) dx$. As a Riemann sum this is $V = \sum A(x) dx$ where bx is some tiny width and A(x) is the cross-section. Similarly, if the crosssections are perpendicular to the y-axis, we get area function A(y), a range of integration $a \le y \le b$, and a volume formula $V = \int_{a}^{b} A(y) dy$.

Exit Ticket Inverse Trigonometric Functions

Fill in the derivatives and integrals:
1.
$$\frac{d}{dx} [\arcsin(x)] =$$

3. $\frac{d}{dx} [\arctan(x)] =$

Use the rules above to find the integrals below:

1.
$$\int \frac{1}{1+9x^2} dx$$
$$= \int \frac{1}{1+(3x)^2} dx$$
$$= \arctan(3x) \cdot \frac{1}{3} + C$$

3.
$$\int \frac{3}{\sqrt{9-4x^{2}}} dx$$

=
$$\int \frac{3}{\sqrt{9(1-\frac{4}{4}x^{2})}} dx$$

=
$$\int \frac{3}{3\sqrt{1-(\frac{3}{4}x^{2})}} dx$$

=
$$\operatorname{arcsin}(\frac{2}{3}x) \cdot \frac{3}{2} + C$$

5.
$$\int \frac{5x+1}{4+9x^{2}} dx$$

=
$$\int \frac{5x}{4+9x^{2}} + \frac{1}{4+9x^{2}} dx$$

$$u = 4+9x^{2}$$

$$du = 18x dx$$

=
$$\int \frac{5}{18} \int \frac{1}{11} du + \int \frac{1}{4} \int \frac{1}{1+(\frac{3}{4}x)^{2}} dx$$

=
$$-\frac{5}{18} \int \frac{1}{10} du + \frac{1}{4} \int \frac{1}{1+(\frac{3}{2}x)^{2}} dx$$

=
$$-\frac{5}{18} \ln|u| + \frac{1}{4} \arctan(\frac{3}{2}x) \cdot \frac{2}{3} + C$$

2.
$$\int \frac{1}{\sqrt{1-x^2}} dx =$$

4.
$$\int \frac{1}{1+x^2} dx =$$

2.
$$\frac{d}{dx} \left[\arcsin\left(\frac{3}{4}x\right) \right]$$

$$= \frac{1}{\sqrt{1 - \left(\frac{3}{4}x\right)^{2}}} \cdot \frac{3}{4}$$

$$= \frac{3}{4\sqrt{1 - \frac{9}{16} \cdot x^{2}}} = \sqrt{16} \sqrt{1 - \frac{9}{16} \cdot x^{2}}$$

$$= \frac{3}{\sqrt{16 - 9x^{2}}}$$
4.
$$\frac{d}{dx} \left[\arctan(x^{2}) \right]$$

$$= \frac{1}{1 + (x^{2})^{2}} \cdot 2x$$

$$= \frac{2x}{1 + x^{4}}$$
6.
$$\frac{d}{dx} \left[\arcsin(x + 1) \right]$$

$$= \frac{1}{\sqrt{1 - (x + 1)^{2}}} \cdot 1$$

$$= \frac{1}{\sqrt{1 - (x^{2} + 2x + 1)^{2}}}$$