Exit Ticket Solids of Revolution

Solids of Revolution Consider a solid formed by rotating a bounded region about a line y = c with cross-sectional area functions A(x), then the volume formula is

$$V = \int_{a}^{b} \left[A(x) \right] dx$$

Disk method: $A(x) = \pi r^2$ where *r* is a function of *x* **Washer method:** $A(x) = \pi [R^2 - r^2]$ where *R*, *r* are a functions of *x* **Shell method:** $A(x) = 2\pi rh$ where *r*, *h* are a functions of *x*

Set up but do NOT solve the integral that finds the volume of the solid formed by rotating the region bounded by:

Produced by Audriana Houtz, Mathematics Ph.D. student at the University of Notre Dame.

Work and Energy

<u>Examples</u>	
1 A sister is shared like a culiader of beight land and radiu	a lana Tha circular
T. A CISTERY IS Shaped like a cylinder of height din and radiu	the eichard is buried
below around Compute the amount of work done in prim	The astern is duried
out of the cistern from around level if it is filled complet	ely with water
Mass density of water is 100 kg/m3 you may take the acc	elevation due to
arayity as $q = 10 \text{ m/s}^2$.	
Amount of work of displacing AN portion	on of water
=slice weight · displacement	- bottom slice (y=0)
5 Yo = = = = = = = [moves 6m, top
$=(100 \pi \Delta y)(1000)(10) \cdot (6-y_0)$	slice (y=6) moves
10m Hr ² h	0m
$W = 5^{\circ} 1000000 \pi (\omega - \gamma) d\gamma$	
(b) How would the answer change if all the water is pum	ped to a level 2m
above the opening of the cistern?	
Amount of work of displacing AN portion	on of water
=slice weight displacement	- the lowest layer of
5 (volume density gravity) · (0-16)	water moves up
$\circ I \qquad $	om, the nighest
	moves 2m
2 A back is changed like an inverted wight size along such	legional 12 and ille
2. A tank is shaped like an inverted right circular cone of	is filled halfway
up with a certain kind of all compute the amount of	userk done in
Truncing all the gilt a level 2m above the opening of	C the tank Density
of the oil is 500 kg/m ³ Vou may take the acceleration	due to available as
$a = 10 \text{ m/c}^2$	
3m work of displacing AX partian of water	
= slice weight · displacement	
= volume · density · aravity · displaceme	nt
$r = \frac{1}{4}h$ = $(\pi (\frac{1}{4}x)^2 \Delta x) (500) \cdot (10) \cdot (14 - x)$	
= 1 x bo of we bottom o	ter moves 6+2 m fwater moves 12+2m
$W = \int_{0}^{\infty} (\frac{1}{16} \pi x^{2}) (500) (10) (14 - x) dx$	
12mV	