Tabaurations by Darts

Integ	<u>zrat</u>	ior		ec	hn	<u>iqu</u>	ies	•																		
Let's	star	·+ v	viH	n s	son	۱e	int	reg	ral	s	we	alı	rea	dy	kı	now	s ł	1000	to	s	olv	e:				
First,		see		n_	int			-	'																	
	we xe'							nin	g r	001	re	com	pli	cał	red	wi	th	a	u	an	d	a (A ¹			
C	lu= 2×	dх	=>	1 20	lu =	xd	x																			
:	: 12 S	e ^u c	lu																							
	-ze'																									
These	ave.	Dro	ble	2 M	5 1	NP.	ey	DP	ct				e c	oar	nize	P. 0	nd	be	2. 0	ıble	e, 1		501	VP.	wit	h
relativ										1-				3												
														C												
Now i	ve	ook	a	Ł	a _1	nev	5 f	NPE	2 0	f	int	egr	al,	7:	xe	<u>d</u>	Χ.									
If thi		h		0.0			П	20	v	or	01	k	the	6	٥x	the	2		<u> </u>	uld	c		- 1	ho	inte	
If the	inte	2.00	and				, eu	xZ	the	n	we	al	50	co	uld	S) JVE	e it	115	inc		1-51	ube	stit	utic	n.
loweve																										
Ne int											llec	l iv	nte	gro	itio	n t	N	Pa	rts		Thi	S 1	me	tho	d is	
the u		19	UT	11	C	Pro	au	CT	Y UR	٤.																
								•			10						-			11		0	-			
produc	tru	le :				(6)	3)':	: F	a	1 4	a't						L	wr	ite.	- † Y	IS	10	WY	ula	5	

both sides: J(Fg) dx = JFg dx + Jg'f dxJg'f dx : Jg'f dx = J(Fg) dx - Jf'g dxintegrate $2 \mathbf{n} \cdot \mathbf{a} \mathbf{n} = \mathbf{n} \mathbf{n} - \mathbf{n}$ solve for Jg fdx: where u = f(x), v = g(x), SF.g'dx = f.g - Sf'g dx simplify: du = f'(x) dx, dy = g'(x) dxSudv= uv-Sudu and use the mnemonic device substitution: "ultra violet voodoo"

The challenging part of this method is deciding what should be u and what should be dv It is not always clear and some time we will make the wrong choice and have to start over. We know we have made the right choice when we can fill out the formula and Sudu is something we can integrate. I use the acronym LIATE (log, inverse trig, algebra, trig, exponential) to pick u.

Product Rule for Integrals: Sudv = uv - Svdu

Exam	ples:																								
					0		1																		
1. Eve	aluate	the	inte	gral	7	xe	UX (. xk	,																
	ke ^{bx} dx		~ .					_																	
	x c			1 400						at															
du:	= d\x	n= Zen	*dx =	ΰe ^υ	•					105														do .	
	l le X	C	eX a							u=															
= X	· 66			X			zeH	tin	9	wo	rse	Ŵ	hev	n u	e	ain	n fi	or _	1 1	ro (၅ ၀	aw	oy		
		4=6		1.4				_																	
				> todu	1 = O)	K																			
= [xe ^{ux} -	τί Se	4. <u>1</u>	du																					
= 0	xe ^{ux} -	30 8	+c																						
= ŭ	xe ^{ux} -	36 6	° +c																						
	aluate			ni cu	teg	rals	s U;	sin	g i	nte	gra	itio	n	by	Pa	rts	•								
(0)	S x ³ lr								-		_														
	u= In(x																								
	du= \+dq = ln(x) • 4	x 1=	եх"									Ir	nte	<u>0ro</u>	<u>atic</u>	n	Tec	hn	qu	ies	•				
	= In(x) · 4	ī x4 - J	4×4.	x dx								1.	Is	it	a	rule	e I	K	no	w?					
	= - + x ⁴ . r	ו(x) – ז	i J x c	xk									e.g.	Js	inl	odx	, <u>ſ</u> ,	1- ×	E di	<u>, </u>	e ^{2×}	dx,	etc		
	= 4 x ⁴ . In	lx)- म	(¦ x	") +(
				_								2.	Is	th	ere	a	fun	ctic	ni	ite	s de	riv	vita	e?.	
(<i>P</i>)	Sarcta	in (x)	dx										eg.	Sx	sir	n(x²)) dx	<u>, S</u> .	<u> </u>	x2 0	lx,	Sxe	× ^z dı	(,et	rC ·
	u=arctan	nlx) d	v=1d	x		the	re i	5 (alw	ays	5		Lə	u- (sub	stit	utia	n	Sf	glxs)·g'l>) dx	- Sf	(u) <i>d</i>	lu
	$u = \frac{1}{1+x^2}$ = x arct	dx \	1=,X	-		a 1	. hi	idd	len																
	= xarct	an(x)	-7×.	1+x2	dх							3.	Is	iti	a p	rod	uct	th	at	see	ems	ur	rel	ate	d?
			u =1	ltx ^z									Sx	sin	(x)0	1x,	e ^x .	Inlx)dx	,So	ircsi	nlx).10	lx,e	tc
				= zxdx									L	int	rea	rat	ion	b	P	art	ts				
	=xarcta	an(x)-	zIn	LI+x ²)tc																				
(c)	Sxcos	(3×+7) dx	e		feel	s li	Ke	u-	suk	o b	ut	no	t e	exa	ctlv	0	lu							
	U=X		cos(3)	(+2)		له د													x"						
	du=1dx									luct															
	=x·3sin																								
				1=3x+2					if	u=s	inb	k)		du	= X										
				lu= 3d						du= (6			2									
	='axsin(3x+2)-				+c				=	T						s(x`	dx							
																		ple	c						

Exit Ticket Work and Energy

Work and Energy Suppose that the force at any given x is given by F(x), then the work done by the force in moving the object from x = a to x = b is given by

$$W = \int_{a}^{b} F(x) dx.$$

Set up but do NOT solve the following integral:

- 1. A uniform chain 10 m long weighing 30 kg lying completely at the foot of a building 50 m tall.
 - (a) What is the work done against gravity to move one end to the top of the building with the rest of the chain danging free?
 bottom of chain does not move 50m only 40

$$W_{y} = \text{force} \cdot \text{displace ment}$$

$$= \text{density} \cdot \text{length} \cdot \text{gravity} \cdot \text{displacement}$$

$$= (\frac{30}{10}) \cdot (6\times) \cdot (10) \cdot (50-\gamma)$$

$$W = \int_{0}^{10} 30(50-\gamma) \, d\gamma$$
(b) What is the work done to move one end only 30 m off the ground?
$$\text{top only moves 30m off and the bottom moves 20m}$$

$$W_{y} = \text{density} \cdot \text{length} \cdot \text{gravity} \cdot \text{displacement}$$

= $(\frac{30}{10}) \cdot (6\gamma) \cdot (10) \cdot (20 - \gamma)$

 $W = \int_{0}^{10} 30(20 - y) dy$

(c) What is the work done to move the top end of the chain 5 meters off the ground with the rest of the chain still on the ground?

the bottom of the chain doesn't move => adds no work