Week 08: March 9th 2023

Section 14.1, 15.1, \$ 15.2: Two Variable Functions \$ Double Integrals

So far we have exclusively looked at functions of the form y=f(x) and x=h(y), but not all curves or equations follow this form. For example, a circle. The equation of a circle centered at (0,0) with radius r is given by $x^2+y^2=r$. This equation can not be transformed into one of the forms mentioned above. We can solve for x or y but are left with $y=\pm\sqrt{r^2-x^2}$ or $x=\pm\sqrt{r^2-y^2}$ but these are technically two functions each, the top and bottom hemispheres or the left and right hemisphere.

Let us get familiar with these two variable functions with a visual example. Let's say we have a house with a circular floor plan with a cut-off for the entrance. The height at any point in this house can be given by the two variable function $f(x,y) = 14 - \frac{1}{100} (x^2 + y^2)$. Using the picture below answer the questions to the side.

					120				
		Kit	chei	n	Liv	ing			
		[‡] Di	nnin	9	R	000) اکرہا		
_	w						(10,9,		
-20	c							2	0
		Bed	1001	m -10)	Foy	er	e		
		49	tud	۲		er Stran	, 'v + "		
						-	-		

-20

(a) What region of the house are you in at (10,5) and (-10,-10)? (10,5) is in the living room and (-10,-10) is in the living room $\frac{1}{5}$ study (b) What is the height at (10,5) and (-10,-10)? $f(10,5) = 14 - \frac{1}{100}((10)^2 + (5)^2) = 14 - \frac{1}{100}(125) = 14 - 1.25 = 12.75$ $f(-10,-10) = 14 - \frac{1}{100}((-10)^2 + (-10)^2) = 14 - \frac{1}{100}(200) = 14 - 2 = 12$ (c) Where is the highest point? What is the height around the circular perimeter? Highest point happens when we subtract 0 from 14, i.e. (0,0).

Around circular edge $f(x,y) = 14 - \frac{1}{100}(x^2+y^2) = 14 - \frac{1}{100}(r^2) = 14 - \frac{1}{100}(20)^2 = 14 - 4 = 10$ (d) Write down the height function along the entrance in terms of x with a range. Using the equation of the line y = x - 20, $f(x,y) = f(x, x - 20) = 14 - \frac{1}{100}(x^2+(x-20)^2)$ (e) Parameterize (or describe) the foyer region in terms of x and y. X ranges from 0 to 20 and y ranges (in x terms) from x-20 to 0

(f) Use the ideas of Riemann sums to find the internal volume of the house enclosed by the foyer. Nolume enclosed by the surface $f(x,y) = f(x,x-zo) = 14 - \frac{1}{100} (x^2 - y^2)$ over the region $D = \frac{1}{2} (x,y) | 0 \le x \le zo$, $x - zo \le y \le 0$.

V-----

Divide the region D up into small rectangular patches with evenly spaced horizontal and vertical lines. We describe each square by its center (x,y) with width Δx and length Δy so it has area $A = \Delta x \cdot \Delta y$. Since this square is infinitely small, we can assume the height to be f(x,y). Thus $\Delta V = \Delta x \cdot \Delta y \cdot f(x,y) = (14 - \frac{1}{100} (x^2 + y^2) \cdot \Delta x \cdot \Delta y)$. Just like before we can sum over the variables to get $V = \lim_{x \to \infty} \sum_{x \to \infty} 14 - \frac{1}{100} (x^2 + y^2) \cdot \Delta x \cdot \Delta y$.

Double Integrals

-1

-2

Rectangular Coordinates

The double integration of f(x,y) over the rectangle $R = \mathbb{E}(x,y) | a \le x \le b, c \le y \le d = \int_R^d \int_A^b f(x,y) dx dy$ (if it exists).

example. Compute $SS_R \times^2 y^2 + \cos(\pi \times) + \sin(\pi y) dA$ over $R = [-2, -1] \times [0, 1]$.

 $SJ_{R} \times \sqrt[3]{y^{2}} + \cos(\pi x) + \sin(\pi y) dA = \int_{0}^{1} \int_{-2}^{-1} \times \sqrt[3]{y^{2}} + \cos(\pi x) + \sin(\pi y) dx dy$

= $\int_0^{1} \left[\frac{1}{3} x^3 y^2 + \frac{1}{7} \sin(\pi x) + x \sin(\pi y) \right]_2^{-1} dy$ sin(πy) is a constant with respect to x

 $= \int_0^1 \frac{7}{3} y^2 + \sin(\pi y) dy$

 $= \left[\frac{2}{4}\sqrt{3} - \frac{1}{4}\cos(\pi\sqrt{3})\right]_{0}^{1}$ $= \frac{2}{4} + \frac{2}{4}$

Over General Regions

So far we have been working under the assumption the region we are working over is a rectangle, but this isn't always the case. The integral over any region D can be described in two ways:

(i) Vertically Simple (ii) Horizontally Simple

D= E(x,y) las x = b, g, (x) = y = g2(x) 3 D= E(x,y) lh, (y) = x = h2(y), c= y = d3

 $\int\int_{D} f(x,y) dA = \int_{a}^{b} \int_{g_1(x)}^{g_2(x)} f(x,y) dy dx$

Y=9.(X)

 $SS_{D} f(x,y) dA = S_{c}^{d} S_{h_{1}(y)}^{h_{2}(y)} f(x,y) dx dy$

x=h2(7)

x=h.14

example. Compute $S_D e^{x/y} dA$ where $D = \xi(x,y) | 1 \le y \le 2, y \le x \le y^3$ (this is case (ii)) $S_D e^{x/y} dA = \int_{1}^{2} \int_{1}^{y^3} e^{x/y} dx dy$ $= \int_{1}^{2} [y e^{x/y}]_{1}^{y^3} dy = \int_{1}^{2} y e^{y^2} - y e^{y^2} dy$

 $= \left[\frac{1}{2}e^{y^{2}} - \frac{1}{2}y^{2}e^{y^{2}}\right]^{2} = \frac{1}{2}e^{y^{2}} - 2e^{y^{2}}$

example. Compute the volume of the forer in the house example above.

20	The foyer is both vertically and horizontally si	imple so we can do it two ways.
kitchen Living	(i) vertically $D = \xi(x,y) 0 \le x \le 20, x - 20 \le y \le 03$	(ii) horizontally D= €(x,y) -20≤y≤0,0≤x≤y+203
Dinning Room	$\int_{0}^{20} \int_{x-20}^{0} 4 - \frac{1}{100} (x^{2} + y^{2}) dy dx$	$\int_{-20}^{0} \int_{0}^{y+20} 4 - \frac{1}{100} (x^{2} + y^{2}) dx dy$
-20 C Za Bedroom Fover e	$= \int_{0}^{20} \int_{x-20}^{0} \frac{14}{14} - \frac{1}{100} \frac{1}{x^{2}} - \frac{1}{100} \frac{1}{y^{2}} \frac{1}$	$= \int_{-20}^{0} \int_{0}^{1} \frac{1}{14} - \frac{1}{100} x^{2} - \frac{1}{100} y^{2} dx dy$
Bedroom (-100) \$ Study \$ Study	$=\int_{0}^{20} H_{Y} - \frac{1}{100} x^{2} y - \frac{1}{100} \frac{1}{3} y^{3}]_{x-20}^{2} dx$	$= \int_{-20}^{0} 14x - \frac{1}{300} x^{3} - \frac{1}{300} y^{2} x \int_{0}^{1/120} dy$
-20	$= \int_{0}^{20} 4(x-20) - \frac{1}{100} x^{2} (x-20) - \frac{1}{300} (x-20)^{3} dx$	$= \int_{-\infty}^{\infty} 14(y+20) - \frac{1}{300} (y+20)^{3} - \frac{1}{300} y^{2}(y+20) dy$
	$= \int_{0}^{20} 14x - 280 - \frac{1}{100}x^{3} - \frac{1}{5}x^{2} - \frac{1}{300}x^{3} - \frac{1}{5}x^{2} - 4x + \frac{80}{3}dx$	$= \int_{-20}^{0} - \frac{1}{75} \sqrt{3} - \frac{2}{5} \sqrt{2} + 10 \sqrt{3} + \frac{1}{3} \sqrt{2} \sqrt{3}$
	$= \int_{0}^{20} - \frac{1}{75} x^{3} - \frac{2}{5} x^{2} + 10x + \frac{760}{3} dx$	$= \frac{-1}{300} \sqrt{4} - \frac{3}{15} \sqrt{3} + 5 \sqrt{2} + \frac{700}{3} \sqrt{3} - \frac{1}{20}$
	$= -\frac{1}{300} \times \frac{4}{15} \times \frac{2}{15} \times \frac{3}{5} \times \frac{5}{5} \times \frac{7}{15} \times \frac{7}{5} \times \frac{7}{5$	$= 0 - \left(\frac{-1}{300} \left(+20\right)^{4} - \frac{3}{15} \left(-20\right)^{3} + 5\left(-20\right)^{2} + \frac{760}{3} \left(-20\right)\right)$
	$= -\frac{1}{300} (20)^4 - \frac{2}{15} (20)^3 + 5 (20)^2 + \frac{740}{3} (20)$	$=\frac{7000}{3}$

In Polar Coordinates

So far the region D could either be described by Cartesian coordinates or by functions of cartesian coordinates. Sometimes a region is beter described in terms of polar coordinates like disks, ring, or portions of disks and rings. For instance if D is the disk of radius 2 then D can be described by $-2 \le x \le 2$ and $-14 - x^2 \le y \le 14 - x^2$ OR $0 \le 0 \le 2\pi$ and $0 \le r \le 2$, which set of integrals looks easier to solve: $\int_{D} f(x,y) dA = \int_{-2}^{2} \int_{-14 - x^2}^{4u - x^2} f(x,y) dy dx = \int_{0}^{2\pi} \int_{0}^{2} f(r\cos\theta, r\sin\theta) \cdot r \cdot dr d\theta$.

X=rcos0

y=rsin0

To convert from rectangular to polar: To convert polar to rectangular:

 $r^2 = \chi^2 + \chi^2$

 $\alpha = \tan^{-1}(\frac{y}{x}) + \pi$ (sometimes α is not enough)

example. Convert each of the following points into the given coordinate system.

(a) (3,-3) into polar (b) (3, 13') into polar (c) (12', π/4) into rectangular (d) (2, 7π/6) into rectangular.

		10	(3, 13')	(12, 17/4)	
	0 1 1				(2,771/6)
	(3,-3)				
r= [(5) ² + (-3) ² = 18 = 32	$=\sqrt{(3)^2+(\sqrt{3})^2}$	= 112 = 213 X=	- Z cos(T/4)= 尼(星)=1	X=2(05(41/6)=2(-13/2)=-3
x=+	$\tan(\frac{-3}{3}) = -\frac{\pi}{4}$	$= \tan^{-1}(\frac{\sqrt{3}}{3})$)= π/ω	$= \sqrt{2} \sin(\frac{\pi}{4}) = \sqrt{2} \left(\frac{\sqrt{2}}{2}\right) = 1$	$y = 2 \sin(\frac{1}{7}\pi/b) = 2(-\frac{1}{2}) = -1$

example. Convert each of the following equations into the given coordinate system. (a) 2x - 5x³ = 1+ xy into polar (b) r=-8cos0 into cartesian $2(rcos\theta)-5(rcos\theta)^{3}=11(rcos\theta)(rsin\theta)$ $r^2 = -8r\cos\theta$ $2r\cos\theta - 5r^3\cos^3\theta = 1 + r^2\cos\theta\sin\theta$ $x^{2}+y^{2}=-8x$

example. The density of a quarter of a disc of radius 2m centered at the origin sitting in the first quadrant is given by the function $f(x,y) = 2x^2 + y^2$. Find the total mass of the quarter disc. $Mass = SS_{R} \rho(x, y) dA$

- $= \int_{0}^{2} \int_{0}^{\sqrt{r^{2} x^{2}}} \frac{2x^{2} + y^{2} dy dx}{2x^{2} + y^{2}} \frac{2x^{2} + y^{2}}{r^{2} dy dx}$ $= \int_{0}^{2} \int_{0}^{\sqrt{r^{2}}} (r^{2} \cos^{2}\theta + r^{2}) r d\theta dr$ $x^{2} + x^{2} + y^{2}$
- $= \int_{0}^{2} \int_{0}^{\pi/2} r^{3} \cos^{2}\theta + r^{3} d\theta dr \qquad (r \cos \theta)^{2} + r^{2}$
- $= \int_{0}^{2} \int_{0}^{\pi/2} r^{3} \left(\frac{1}{2} \left(1 + \cos(2\theta) \right) \right) + r^{3} d\theta dr$
- $= \int_{0}^{2} \left[\frac{1}{2} r^{3} \left(\Theta + \frac{1}{2} \sin (2\Theta) \right) + r^{3} \Theta \right]_{0}^{\pi/2} dr$
- $= \int_{0}^{2} \frac{\pi}{4}r^{3} + \frac{\pi}{4}r^{3} \sin(\pi) + \frac{\pi}{2}r^{3} (0 + \frac{\pi}{4}r^{3} \sin(6) + 0) dr$
- $=\int_0^2 \frac{3}{4}r^3 dr$
- $= \begin{bmatrix} 3 & 4 \\ 10 & r \end{bmatrix}_{0}^{2}$
- = 3- 3/10
- = 45

example. Compute SSD 2xydA where D is the region between the circle of radius 2 centered at the origin and the circle of radius 5 centered at the origin that lies in the first quadrant.

-3

- 6

- D: $2 \le r \le 5$ and $0 \le \theta \le T/2$
- $\begin{aligned} \int \int_{0}^{\pi/2} 2xy \, dA &= \int_{0}^{\pi/2} \int_{2}^{5} 2(r\cos\theta) (r\sin\theta) r \, dr \, d\theta \\ &= \int_{0}^{\pi/2} \int_{2}^{5} r^{3} \sin(2\theta) \, dr \, d\theta \qquad \sin(2\theta) = 2 \sin\theta \cos\theta \\ &= \int_{0}^{\pi/2} \left[\frac{1}{4} r^{4} \sin(2\theta) \right]_{2}^{5} \, d\theta = \int_{0}^{\pi/2} \frac{u0^{9}}{4} \sin(2\theta) \, d\theta \end{aligned}$
 - - $= \left[-\frac{100}{8} \cos(2\theta) \right]_{0}^{\pi/2} = \frac{100}{4}$