Population Modeling

) \

A population γ of a single species with unrestricted growth is given by the differential equation $dk = K\gamma$ for k > 0. The issue is that this model allows growth with unlimited resources. There are no caps or restrictions.

dy dt

Yo

The Logistic Model

In reality there are restrictions like a max population.

Y

N-Yo

unlimited population max population N de with restrictions

de = C y (N-y) = CN y (1-N); N= carrying capacity, K= intrinsic growth rate

÷

Examples:

dy dt

1. An outbreak of zombies was discovered in the rural City of Sweet Water. The all embracing Mayor Dumass of the city believes that humans and zombies could coexist and wanted laws set up to stop (the still human) people in the city from an all out hunting spree. Renown scientist Dr Madd who survived a recent zombie attack has called for a City Council meeting to convince Mayor Dumass and all administrators of the serious dangers of an unchecked zombie population. Recent estimates give the number of zombies at one thousand and the total city population (both zombies and humans) at forty thousand. If zombie infection occurs at a rate of 0.1 thousand per day per one thousand human per one thousand zombie, how would scientitst Dr Madd convince the City Council that they need to act fast and hit hard on the zombie population before it is too late?

Let H= Z=	numbe	er of i	nfect	ed hu	imans	(in th	ousand	scilles,		
Then $\frac{dz}{dt}$ i.e. $\frac{dz}{dt} =$	is pr	oport	ional	to H	z by	the ra	te K. (Law of	Mass	Action)
$i \cdot e \cdot \frac{d^2}{dt} =$	K. H. E	i w	nere	K=0.1						
Since H	ne nur	nber (of inf	ected	has a	max	DODU	ation	(40 Hha	usand)
H + 2 = N							r - r - r			
	\wedge									
H + 2 = 4										
H + Z = 4 H = 40 -										

general solution:	
	$ (1) \frac{1}{2(40-2)} = \frac{A}{2} + \frac{B}{40-2} $
$\frac{dz}{dt} = 0.12(40-2)$	
	$\frac{1}{2(40-2)} = \frac{A}{2}\frac{40-2}{40-2} + \frac{B}{40-2} \cdot \frac{2}{2}$
$\frac{1}{2(40-2)}$ dz = 0.1 dt	
	1 = A(40 - 2) + B(2)
$\int \overline{z(40-z)} dz = \int 0.1 dt$	1=40A-AZ + BZ
(1) (2) Partial Fractions	2: 02 = B2 - A2
	C: 1 = 40 A
$\int \frac{1140}{2} + \frac{1140}{40-2} dz = \int 0.1 dt$	
	$A = \frac{1}{40}$ $B = A = \frac{1}{40}$
$\frac{1}{40} \ln z - \frac{1}{40} \ln 40 - z = 0.1t + c$	$B = A = \overline{40}$
$\frac{\text{derivative check:}}{\frac{1}{40} \cdot \frac{1}{2} \cdot 1 - \frac{1}{40} \cdot \frac{1}{40 - 2} \cdot -1 = 0.1 \checkmark$	
specific solution:	
$2(0)=1 \Rightarrow (t, z) = (0, 1)$	
$\frac{1}{40} \ln 1 - \frac{1}{40} \ln 40 - 1 = 0.1(0) + c$	
$\frac{1}{40}(0) - \frac{1}{40} \ln 39 = 0 + c$	
<u>- นี่อ</u> ln(39) = c	
$\frac{1}{40} \ln z - \frac{1}{40} \ln 40 - z = 0.1t - \frac{1}{40} \ln 39)$	
solve for Z:	
Solve for 2.	
$\frac{1}{40} \ln z - \frac{1}{40} \ln 40 - z = 0.1t - \frac{1}{40} \ln 39)$	
$\frac{1}{40}(\ln z - \ln 40 - 2) = 0.1t - \frac{1}{40}\ln(39)$	factor out to
$\ln z - \ln 40 - z = 4t - \ln (39)$	
$\ln \left \frac{2}{40-2} \right = 4t - \ln(39)$ $\ln x - \ln (39)$	$ y = \ln \left \frac{x}{y} \right $

$e^{m(40-2)} = e^{4t-m(34)}$		
$\frac{2}{40-2} = 4t - \ln(39)$	$e^{\ln(x)} = x$	
$\frac{2}{40-2} = \frac{4t}{2} - \ln(34)$	$e^{a + b} = e^{a} \cdot e^{b}$	
$\frac{2}{40-2} = e^{4t} e^{\ln(\frac{1}{3a})}$	$a\ln(x) = \ln(x^{a})$	
$\frac{2}{40-2} = e^{4t} \cdot \frac{1}{39}$	$e^{\ln(x)} = x$	
$z = \frac{1}{39} e^{4t} (40 - z)$		
$2 = \frac{40}{39} e^{4t} - \frac{1}{39} e^{4t} = \frac{1}{39} e^{4t} = \frac{1}{2} e^{4t$		
$2 + \frac{1}{39} e^{4t} = \frac{40}{39} e^{4t}$		
$z(1+\frac{1}{39}e^{4t})=\frac{40}{39}e^{4t}$		
$\mathcal{Z} = \frac{40e^{4t}}{39} \cdot (1 + \frac{1}{39}e^{4t})$		
$\frac{40e^{4t}}{2=39+e^{4t}}$		
	ed population over take the non-infected? i.e. z=2	0
nen does the infect	ed population over take the non-infected? i.e. z=2 are equalities so pick the easiest to plug z=20 into	0
nen does the infect the expression above		0
nen does the infect the expression above		0
nen does the infect the expression above $\frac{2}{40-2} = e^{4t} \cdot \frac{1}{39}$		0
nen does the infect the expression above $\frac{2}{40-2} = e^{4t} \cdot \frac{1}{39}$ $\frac{20}{40-20} = \frac{1}{39}e^{4t}$		0
hen does the infect the expression above $\frac{2}{40-2} = e^{4t} \cdot \frac{1}{39}$ $\frac{20}{40-20} = \frac{1}{39}e^{4t}$ $1 = \frac{1}{39}e^{4t}$		

2. A population of fish grows with growth constant (intrinsic growth rate) of 0.5 in a lake of carrying capacity of 10 thousand is modeled by the logistic differential equation dt = 0.5p(1 - 10) where p is its population measured in thousands. If the initial population is 5 thousand, find a formula for p(t).

$\frac{dp}{dt} = 0.5 p (1 - \frac{p}{10})$	$ (1) \frac{10}{p(10-p)} = \frac{A}{p} + \frac{B}{10-p} $
separable diff. eq.	10 = A(10-p) + B p
$\frac{1}{p(1-18)} \cdot dp = 0.5dt$	P: B-A=0 C: 10A=10
$\int \frac{\int 1}{p(1-\frac{1}{6})} dp = \int 0.5 dt$	A=1,B=1
S = + 10-p dp = S0.5 dt	
general solution:	
n p - n 0 - p = 0.5t + 0.5t	
specific solution when In151 - In110-51 = 0.5(0)+c In151 - In151 = c 0 = c	p(0) = 5:
Solve for p: InIpI-InIIO-pI = 0.5t	
	$ \mathbf{x} - \ln \mathbf{y} = \ln \frac{\mathbf{x}}{\mathbf{y}} $
$\overline{10^{-}p} = e^{0.5t} e^{1t}$	
$p = e^{0.56} (10 - p)$	
$p = 10e^{0.5t} - pe^{0.5t}$	notice: this problem used 3 topics
$P + P e^{0.5t} = 10e^{0.5t}$	 separable differential equations partial fraction decomposition logarithmic l exponential rules
$P(1+e^{0.5t}) = 10e^{0.5t}$	
$P = \frac{10e^{0.5t}}{1+e^{0.5t}}$	

Exit Ticket Separable Differential Equations

Separable Differential Equations The solution to the separable differential equations $\frac{dy}{dx} = p(x)q(y)$ is

$$\frac{dy}{dx} = p(x)q(y)$$
$$\frac{1}{q(y)}dy = p(x)dx$$
$$\int \frac{1}{q(y)}dy = \int p(x)dx$$

Find the general solution to the following differential equations:

1.
$$\frac{dy}{dx} = 6y^{2}x$$
$$\int \frac{1}{y^{2}} dy = \int bx dx$$
$$-y^{-1} = 3x^{2} + c$$
$$\frac{1}{y} = -3x^{2} - c$$
$$\frac{1}{-3x^{2} - c} = y$$

3.
$$y' = 2xe^{-y} - 4e^{-y}$$

 $\frac{dy}{dx} = e^{-1}(2x - 4)$
 $\int e^{y} dy = \int 2x - 4 dx$
 $e^{1} = x^{2} - 4x + c$
 $y = ln(x^{2} - 4x + c)$

2.
$$y' = \frac{3x^2 + 4x - 4}{2y - 4}$$

 $\frac{dy}{dx} = \frac{1}{2y - 4} (3x^2 + 4x - 4)$
 $\int 2y - 4dy = \int 3x^2 + 4x - 4dx$
 $y^2 - 4y = x^3 + 2x^2 - 4x + C$

4.
$$\frac{dy}{dt} = \frac{\cos^2(y)}{y}$$

$$\int \sqrt{\cdot} \frac{1}{\cos^2(y)} dy = \int 1 dt$$

$$\int \sqrt{\cdot} \sec^2(y) dy = \int 1 dt$$

$$u = \sqrt{-} dv = \sec^2(y) dy$$

$$du = dy \quad v = \tan(y)$$

$$\forall \tan(y) - \int \tan(y) dy = t + c$$

$$\forall \tan(y) - \int \frac{\sin(y)}{\cos(y)} dy = t + c$$

$$u = \cos(y)$$

$$du = -\sin(y) dy$$

$$\forall \tan(y) + \int \frac{1}{u} du = t + c$$

$$\forall \tan(y) + \ln(\cos(y)) = t + c$$

Produced by Audriana Houtz, Mathematics Ph.D. student at the University of Notre Dame.