First Order Linear Differential Equations

Q Solve the initial value prol	$olem: xy' + y = e^{zx} and y(1) = 0$	b.
Does the left hand side re	emind you of anythina?	A derivative rule?
product rule: (fg)'= f'g t g'f		
opperal solution:	specific solution:	simplifu:
general solution.	Specific Solution	Simpling -
$XY' + Y = e^{2X}$	@ y(1)=0	$N = \frac{1}{2x} e^{2x} + \frac{(-e^{2}/2)}{x}$
$\frac{d}{dx}$ (X) $= e^{2x}$	$O = \frac{1}{2(1)} e^{2(1)} \frac{C}{1}$	$\frac{1}{2x} = \frac{e^2}{2x}$
$\int (x_y)^2 dx = \int e^{2x} dx$	$0 = \frac{1}{2}e^{z} + C$	$y = \frac{1}{2x} \left(e^{2x} - e^2 \right)$
Jf'dx=f+c		
$x_{11} = \frac{1}{2} e^{2x} + c$	$c = \overline{2} e^{-1}$	
$y = \frac{1}{2x} e^{2x} + \frac{c}{x}$		
rirst Urder Linear Differentia	ai Equations	

Standard form: N'+ A(X) N = B(X)

The key to solve it is to have something like $\frac{d}{dx}(\alpha(x)y)$ on the left hand side (LHS) and a function only in terms of x on the right hand side (RHS).

 $\frac{d}{dx}(\alpha(x)y) = \alpha(x)y' + \alpha'(x)y$

In order to get y' + A(x)y to resemble $\frac{d}{dx}(a(x)y)$ we must multiply by a(x) on both sides:

 $\alpha(x)y + \alpha(x)A(x)y = \alpha(x)B(x)$

For the two to be equivalent we need a function x(x) such that:

 $\alpha'(x) = \alpha(x) A(x)$

W	e co	an	use	2 4	sep	aro	tic	n c	f,	lari	iab	les	to	50	olve	: +	his										
		<u>d∝</u> dx	= (x A	(x)																						
		1	da	- 1		dv							۸۱۱	:ملا	لم م											 	
		æ	UR.		1(2)	UA							r \[1	110	וכ	0_7	bay	•									
		<u>}</u>	da	0	SAL	x) d	x						d	= e	SAU	s)dx											
		In	121	1	A	(x) 0	lx_																			 	
		la	= (ese sa	(x)d	x																					
M	e c	an	na	Ś	in	te	gro	te	bo	th	sic	les	•													 	
		dl	<u></u>	10	()	6.1	~ ` `			RI	r)																
			<i>b</i> , <i>v</i> , <i>d</i>							ы							AII	H	nis	to	50.	v :					
		dx dx	- (x	(x)	y(x)) =	x((x) E	5(x)								4(x)=	n alx	5[{	d()	()B	(x)d	x t	c]		
		٢ -	d					6									is	the	e g	en	era	5	sluł	ior	<u>، ر</u>		
		7 0	l(x)	ldl	x)7	(x))	dx	= 1	X(X)	BU	() d)	د															
		x(X) \	(x)		Sau	(X) 1	B(x)	dx																		
						0																				 	
		Y ('	x) =	α(.x)	<u> «(</u>	x) E	<u>3(x)</u>	dx																	 	
Sł	e.D.S	5 t	05	io).	ve:																						
I	. W	cite	: #	ne	eq	ua	tion	n in	n s	tar	da	rd	for	m	Y' 1	- A(x)	= 1	Blx'	<u> </u>							
														۲۵ <i>۵</i>	vdx											 	
II.	Co	m£	outi	i s	nte	gra	atix	ng	tac	tor	0	(X)	= e'	3 57/74												 	
L	Fir	d	the	. a	en	eral	s	olu	hor		v(x)=	 a(x)	sES	αι	x) B	5(x)	dx ·	+c]							
V.	It	۲	eq	uir	ed	, fi	nd	a	Pa	rti	culi	ar	50	lut	ion	•											
Fx	am	ומו	es	•																							
		·۲'																					_o x				
1.	٧'-	(+	an	(x)) Y=			(0)	=3								2.	X	dx dx	+ Ę	54	11	5 X ³				
	T	1	L 1					1										-			5		_ex				
	L •	1 AUA	* (;) =	- 10 - 1	anu	(X) ())·	y = :	L B(x)= 1									L .	Ч 14	+ x)=	× .	N= RI	۳× + ۲×	e v	x T		
							3														~)			^			

			0.5	
II. $\alpha(x) = e^{\int -tan(x)dx}$		IL	$\alpha(x) = e^{\int \frac{1}{x} dx}$	dx x
$= e^{\ln \log(x)}$			= e ^{5ln}	IXI
$= \cos(x)$			= elnlx	51
			= X	
$\mathbb{II}_{X}(X) = \frac{1}{\cos(x)} \left[\int (\cos(x)) \cdot (1) \right]$	x +c			×
		III	$\gamma(x) = \frac{1}{x^5} \left[\int$	$x^{s} \cdot \frac{e}{x^{4}} dx + c$
$=\overline{\cos(x)}\left[\sin(x) + C\right]$				
			= $\frac{1}{x^5}$ [S	xe ^x dx +c]
$= \frac{\sin(x)}{\cos(x)} + \frac{c}{\cos(x)}$				$u = x$ $dv = e^{x} dx$
				$du = 1 dx$ $v = e^{x}$
$= \tan(x) + \frac{c}{\cos(x)}$			= x ⁵ [x	e ^x -Se ^x dx +c]
\mathbf{W} . @ $\mathbf{V}(0) = 3$			$=\frac{1}{x^3}$	xe ^x - e ^x + c]
			x	
$3 = tan(0) + \frac{c}{cos(0)}$			= x 4 -	$\frac{1}{x^{5}}$ + $\frac{1}{x^{5}}$
3=1+ 5			PX PX	- C.
3=c		yt:	x)= xॅंग - xॅंड 1	r x
		•		
$y(x) = tan(x) + \frac{3}{\cos(x)}$				
•				