
Numerical Methods
The last few days we have been discussing differential equations
and how to solve them. But what happens when we encounter one

we can't solve?

If we are given a differential equation with an initial value then we

can estimate the solution. Since a is a fancy way of saying slope ,
we

can draw a graph with the slope of our function at each point.

Slope Field

Slope field : at each point we have an "arrow" that describes the slope at that

point, z = f(x
,y) = dX

.

Graph the slope field for y =X
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We can use differential equations to create more complex slope fields .

Graph the slope field for y = X + y?
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Y = x +y , y(0) = 0 .5

Euler's Method

We use this information to estimate our solution to the differential

equation. We start at our initial point, find our slope at that point ,
graph that slope ,

and repeat.



Let's start with a differential equation we know how to solve :

Consider the initial value problem y = 2x - 3
, y 10) = 3.

Specific Solution : Estimate :

Sydx = S2x- 3dx slope at 10,
3) :
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we found above with a "step" size of 0 .5. The smaller

% the step size,
the better the estimate.

We can write Euler's method as an algorithm :

Euler's Method

Consider the initial-value problem y= f(x
,Y) , y(X0)= yo . Using the step size h,

Xn = Xn- 1 + h

Yn =Yn- 1 + hf(Xn- 1
, yn-1)
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Now let's try a differential equation we don't know how to solve :

Consider the initial value problem y = x2+
2

, y10) = E
.
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As you can see,
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2.The weight w in kilograms of a kind of tropical fungus is modeled by
dw= i
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