Week 12: April 6th, 2023

X | Y | Y' |

Section 9.3: Graphical and Numerical Methods

Slope field: at each point we have an "arrow" that describes the slope at that point, $z = F(x, y) = \frac{dy}{dx}$ example. Graph the slope field for y' = x.

		 			1		1																				
-	.2	-2		2	Ī	1	1		4'	(-2)	= -Z	: ;	slor	be a	sf :	-2		-2				We	car	US	e tr	ese	
	- \	-1		, í			1		N	(-1) =	-1	sla	ppe	of			-1					slor	bes	to	ske	tch	
	0	0			[,		1		N'	(0) =	0:	slor	e .	of	9		Y	ise :	0, r	นทะ			V =	źx	² +C		
	۱	١		•		,	1.		N	(1) =	1:	slo	De	of	1		./										
	2	2							,	(z) =	2:	slo	De	of	2	i		2									
Т					Γ								1				1										

d

ition

We	ca	n u	se	difi	fere	ntia	le	gua	tions	to	Cre	eate	m	ore	com	1 plex	(sl	ope	fie	lds.							
exa	mp	e. (ara	ph f	he	Slop	e f	ield	for	N'	= χ ²	+ 12															
X	0	0.5	1							1	1 1 1 0 1 1 1 1 1	<u>, , , ,</u> , , , , , , , , , , ,	111	111	777 777 777		Usi	ina	ac	om	oute	ra	ener	ated	d sl	ode	fie
0	0	0.75	1			1	1	1		0	8	, , , , , , , , , , , , ,	111	111	/ / /: / / / / / /		for	 	= X ²	$+ \sqrt{2}$	we		n s	keta	ch 4	he	solu
0.5	0.25	0.5	1.25				^	1			6 - 7 - 7 - 7	, , , , , , , , , , , , ,	, , , , , , , , , , , ,	, , , , , , , , , , , ,	///		of	the	in	itial	val	ue 1	prot	lem	N'	= x ² :	t v ² ,
1	1	1.25	2				<u>, </u>	1		0	4	 	ת ת ת י ת ת ת י	א א א א. א א א א. א א א א.	///		yla) = (0.5								
									T	0		• • • • •	 	, , , , , , , ,	111		•										

Euler's Method

Consider the initial value problem y'= 2x-3, ylo)=3.		
Initial Value:	Approximate:	
$S_{y}' dx = S_{zx-3} dx$	(0,3): y'= 2(0)-3 =-3	x= 1.5: y'= 2(1.5)-3=0
$= x^2 - 3x + C$	slope 1	slope 1
@ ylo) = 3	x=0.5: y'= 2(0.5)-3 = -2	x= 2: y'= 2(2)-3=1
$3 = 0^2 - 3(0) + c$	slope 1	slope 1
$N = x^2 - 3x + 3$	x = 1: y' = 2(y) - 3 = -1	x=2.5: y'=2(2.5)-3=2
	-1	2

The pink graph consists of line segments that approximate the solution to the initial value of (0,3). The slope of the solution at any point is determined by the right-hand side of the differential equation, and the length of the line segment is determined by increasing the x value by 0.5 each time. This is the basis of Euler's Method.

Before we state Euler's Method, let us consider a more complex initial-value problem: y'= x²-y², y(-1)=2.

At the point (-1,2), the slope of the solution is given by $y' = (-1)^2 - z^2 = -3$, so the slope of the tangent line to the solution at that point is also equal to -3. We take $x_0 = -1$ and $y_0 = 2$. We can use the method of linear approximation y near (-1,z): $L(x) = y_0 + f'(x_0)(x - x_0)$

Using $x_{0} = -1$, $y_{0} = 2$, and $f'(x_{0}) = -3$: L(x) = 2 - 3(x - 1 - 1)

= 2-3x -3 = -3x -1.

Now we choose a step size h and increment x by this value: $x_1 = x_0 + h$. Pick h= 0.1. Then $x_1 = x_0 + h = -1 + 0.1 = -0.9$.

Calculate $y_1 = L(x_1) = -3(-0.9) - 1$

= 1.7.

Therefore the approximation for y when x=-0.9 is y=1.7. We can	repeat this algorithm using x, = -0.9 and y,= 1.7
to solve for xz and yz:	
• the new slope is $y' = (-0.9)^2 - (1.7)^2 = -2.08$	
• $x_2 = x_1 + h = -0.9 + 0.1 = -0.8$	
• $L(x) = y_1 + f'(x_1)(x - x_1)$	
= 1.7 - 2.08(x - (-0.9))	
$= 1.7 - 2.08 \times - 1.872$	
$= -2.08 \times -0.172$	
$v_{12} = l(x_2) = -2.08(-0.8) + 0.177$	
= 1.492	

Euler's Method

Consider the initial-value problem y' = f(x,y), $y(x_0) = y_0$. Using the step size h, $x_n = x_0 + nh$ $y_n = y_{n-1} + h f(x_{n-1}, y_{n-1})$

Xo Xi

...

Partial Derivatives

def. The partial derivative of f = f(x,y) with respect to x $f_x(x,y)$ and with respect to y $f_y(x,y)$ is the derivative where we pretend all other variables are constants.

example. Find the partial derivatives fx, fy for f(x,y) = x2 + y2 + xy.

 $f_x = 2x + 0 + y$ the first term is as normal, y^2 is just a constant, xy has a constant of y $f_y = 0 + 2y + x$ x^2 is just a constant, y^2 is your normal derivative, xy has a constant of x

Now can continue this pattern and take $(f_x)_x$, $(f_x)_y$, $(f_y)_x$, $(f_y)_y$. example find the higher partials of $f(x,y) = x^2 + y^2 + xy$

 $(F_x)_x = 2$, $(F_x)_y = 1$, $(F_y)_x) = 1$, $(F_y)_y = 2$