Taylor Polynomial & Taylor Series

In this section we want to represent functions with power series. Let us start with the geometric series: $\frac{2}{5}$ arⁿ = $\frac{1}{1-r}$ for 1r1 < 1. If we take a=1 and r=x, then we have $\frac{2}{5} x^n = \frac{1}{1-x}$ for 1x1 < 1. This means we can represent the function $f(x) = \frac{1}{1-x}$ with the power series $\frac{2}{5} x^n$ for 1x1 < 1, we say that the function $f(x) = \frac{1}{1-x}$ has a power series representation $1 + x + x^2 + x^3 + ...$ centered at x = 0 for the interval of convergence -1 < x < 1.

Taylor Series

A function f(x) is said to be <u>analytic</u> if it has a convergent power series representation for each c,

 $f(x) = a_0 + a_1(x-c)^2 + a_2(x-c)^2 + ... + a_n(x-c)^n + ... for -r < (x-c) < r$ ushere the coefficients a_i and radius of convergent r are to be determined. We call this series the <u>Taylor Series</u> of the function f(x) centered at x=c.

Maclaurin Series.

For the special case of c=0, we get:

 $f(x) = a_0 + a_1 x' + a_2 x^2 + a_3 x^3 + \dots$ for -r < x < r.

We call this series the <u>Maclaurin Series</u> for f(x) or the Taylor Series for f(x) centered at x=0.

Derivation Taylor Series

Given a function with a power series representation about c, $f(x) = \sum_{n=0}^{\infty} a_n(x-c)^n = a_0 + a_1 (x-a) + c_2 (x-a)^2 + c_3 (x-a)^3 + ...$ that has derivatives of every order that we can find. We can find the coefficients a_n .

First, evaluate every thing at x=c. Then $f(c) = a_0$. So all terms except the first are zero and we now know $a_0 = f(a)$. This doesn't tell us much about the other a_i (i>0). However, if we take the derivative of the function and its power series then plug in x=c, we get $f'(x)=a_1 + 2a_2(x-c) + 3a_3(x-c)^2 + 4a_4(x-c)^3 + ...$ $f'(c)=a_1$ We can continue this process with the second derivative

 $F''(x) = 2a_2 + 3 \cdot 2a_3(x-c) + 4 \cdot 3a_4(x-c)^2 + ...$

 $f''(c) = 2a_2$

	a 3	$=\frac{f'}{3}$	"(<u>c</u>) . 2																										
W	e c	an É	, re (<u>(</u>)	pe	ativ	vely	, d	01	his	P	roc	es	s t	0 1	ec	eive	2 1	he	ge	ne	ral	fc	or m	nula)				
	an	- Y	ļ	•																									
AII	1 to	nget	her	r u	ve	hav	91	the	f	ollo	wir	g	Tan	llor	SE	erie	s	for	f(x)	abi	sut	X	=C,					
	fu	() =	N =0	<u>f</u> "	(<u>c)</u> !	١x	-c) n																					
		= {	-(c)	+	f'(c)(x	-c)	+ 7	<u>(c)</u> !! (x-c	.) ² +	<u>f"(</u> 3	<mark>c)</mark> (;	x-c)	3+	f"((4)	<u>د)</u> (х-с	۲ ⁴ +	• • •									
5	imi	lar	to	de	efir	ning	3 F	>ar-	Hal	SU	ms	s, t	he	NH	n d	egr	ee	Ta	ylor	P	oly	nor	nial	of	; t	(x)	is		
		TN	(x)		2 _	<u>f (c</u> n') ()	(-c)	n.																				
N	ote	H	nat	- +	hev	re	are	. P	lac	lau	rin	ec	zuiv	ale	nt	f	or	the	se	w	her	n (c=().					
W	e (an	al	50	ta	lk	abo	out	H	ne	er	rov	- k	petu	vee	n	the	- Fi	mc.	tion		(x)	av	nd	the	2 N	,th	dea	ree
To	NIO	r F	poly	noi	mia	I Fi	DY (a g	iver	N	•	Rlx	()=	f(x) - "	TNI	x)												,
E	xan	npl	es																										
1.	Fi	nd	th	e	thi	rd	T	ayl	or	PC	bhi	noi	mia	al f	for	· H	ne	fu	nc	tio	n	<u> n(</u>	Xł	z)	cei	nte	re	1 a	ł
	X÷	: -	01	nd	e.	sti	m	ate	lv	hlC	.8).																	
	T.	(X)) = 2	120	<u>+ IC</u> n!) (x	-c) ⁿ																					
			= [(<u>c)</u>)!	(x-	ເງິ	+	<u>f'(c</u>) 1!	(x-	c's	+ <u>F</u>	"(c) 2 \	١x	-c) ²	+	<u>f'''</u> 3	(c))!	(x-	د) ³	+	יי <mark>וכ`</mark> 4!) (x	-c`	۲	· Ty	= U1	p tr	s de	94 .
		f(x)=	In	(Xł	Z)			f(-1)	= v	n(1) =	0			()	(- C) =	(x	-(.	-1)))						
		f"()	x)= x)=	x) 7-7	+2)	NZ.			t.(-1) [-1)	= † = -	=	1	C					1	X1	+1								
		ţ.,,	(x):	(x	2				¢	(-1) =	2	= 2	2															
		fn	(x)=	. ()	(+2)	प			f"	(-1) =	-9	=	-6															
	Ty	(x)	= ()	t	<u> </u> !! ()	X+1,)'+	<u>-1</u> <u>2!</u>	L X I	- I) ²	+ 3	ר) ית זי	(+1)	\$+	-0 4!	· (x	+1)	4											
			= (X+	1)-	1 <u></u> 2(X+	1)2 1	- 3	(x)	+1)3		i (X	(+1)	4														
	In	10.8	3)=	In	(-)	× 1.2 ·	+2)	= (-1.	2+	1).	12	(-1	.2+	۲)	+ 1	5 (-	1.2	+1)	3+	년 (-1.;	2+1) ⁴					
			Тч	(x)	is	for	· \v	nlx	+2'				= (8.0) -	<u>+</u> (0.8)2 +	13	0.	8)4								

2. (a) Find the Taylor Series for
$$f(x) = e^x$$
 about $x=0$.
First use take note that $f^n = e^x$ and $f^n(0) = e^x = 1$ for $n = 0, 1, 2, 3, ...$
Therefore, the Taylor series $f(x) = e^x$ about $x = 0$ is
 $e^x = \frac{\pi}{2} \sum_{n=1}^{\infty} n! (x-0)^n = \frac{\pi}{2} \sum_{n=0}^{\infty} n!$
b. Use the Maclaurin polynomial $T_u(x)$ for e^x to estimate e^{D2}
 $e^x \propto T_u = 1 + x + \frac{1}{21} x^2 + \frac{1}{31} x^3 + \frac{1}{41} x^a + \frac{1}{30}$ or e^{D1} .
 $e^{D^2} \propto T_u(0,2) = 1 + (0,2) + \frac{1}{21} (0,2)^2 + \frac{1}{31} (0,2)^3 + \frac{1}{41} (0,2)^a = 1.2214$
C. Estimate the error of the estimate for e^{D2} .
 $R(x) = f(x) - T(x)$
 $= e^{D^2} - 1.2214$
 $= \sum_{n=0}^{\infty} \frac{1}{n!} (0,2)^n - \sum_{n=0}^{\infty} \frac{1}{n!} (0,2)^n \sum_{n=1}^{\infty} \frac{1}{n} n + \sum_{n=1}^{\infty} \frac{1}{n} n$ all must be an
 $= \frac{\pi}{2} \sum_{n=1}^{\infty} \frac{1}{n!} (0,2)^n$
d. Estimate the value of $\int_{0}^{D^2} e^{x^2} dx$ using $T_u(x)$ for e^x .
 $\int_{0}^{\infty} e^{-x^2} dx \approx \int_{0}^{\infty} T_u(-x^2) dx$
 $= \int_{0}^{\infty} \frac{1}{n} + x^2 + \frac{1}{2} x^4 - \frac{1}{10} x^6 + \frac{1}{20} x^8 dx$
 $= \int_{0}^{\infty} \frac{1}{n} + x^2 + \frac{1}{2} x^4 - \frac{1}{10} x^6 + \frac{1}{20} x^8 dx$