Taylor Polynomials

Ez	an	nple	25																										
1a	. Fir Yl	nd t) i	th s f	e the	3 rd S	-de olu	gr tio	ee n	To of	y lo the	r 2 j	po nit	lyr ial		nia alue	0 2 P	f ro'	y(t ber) (m	cer Y	1te = \	re(r^{2} +	d c ty	nt :	zer Yl	ro, 0)=	wsł 1.	ner	e
b	. U:	se	101 10	۸۲ ۱ f	re (c)	su	14	to	e51	hm	ate	Ę,	(0) (0)	.3)		f"	(0)		.2	f	"" (0)).		3					
	13	(x)	= 2	20-1	1!	(x-	· C)		0!	(x-	0)	+ -	÷ (X-C) [·] +	2		(x-	0)	+ -	3!	⁺ lx	-0)	5					
								-	NIC)+	4'(0).	(x)	+ =	5 Y"	(0)	· (X) ² +	Ġ	1	(0)	۰lx)3						
	Y(x) =	: ?	?	ur	kn	ou	sn											7(- (0	1								
	4'	(X)=	Y ²	+ t	J	9 ⁱ	Ne	n											y '((0)=	(1) ² +	(0)	·(1) = (1			
	<i>\</i> "	(x)	= 2.	1. 1 1. 1	' ' +	(1)(1	(y) ! t.	+ (y y'	') .(t)	im	plia	cit	di	FF.				Y" (: (0) :	=2(= 2·	1) († † 1)+ = 3	(1)) + ((0) ((1)		
	Υ"	'(x)	ייי = (י = 2	oduc Zyl'	יא). קי עי	+ •	pri 1"(1 21	2y)	+	y' 4 2 v	, + (U)	(y' t ·)+ \/"	(4").H	:)			Nun	(0)	=2 =2	1)[1 + 6)+	2(1 [°] 2 =)l3 1()+7 0	2(1)	+(0))(1)
				not	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		- 1						1																
	T ₃	(x)	= \ = 1 = \	+ + 10,)+ 1x 1 ³	γ'(+ ·	0)·	(x) 3) ; 5_ 3	+ z < +	2-19	(0) (10	·(x) x) ² + 3	Ū	Υ''' (0).	(x)	5											
	V	0.3)≈	τ × : Τ,		.3)		5 X \+	(0.:	3)+	MN	(0.7	3) ²	1 5 3	210	3)	3												
2	Th	٩	zrd	м	00				2010	no			ſ	£12	α	c (1i 14	20	b		Б	x):	- 1-	v ^z	1 1	$1\sqrt{3}$,		
<u> </u>	(6)	Fin	nd	th	e v	val	ues	s f	(0).	f	(0).	,F'	'(0)), (ind	f	" (0).			131								
		T3 (x)=	3 2 n=0	<u>f"((</u> n!	<u>هه</u> (x۲		deg	ree	30	f,	(=	de	gre	e c	of	der	ina	tiv	e								
		<u> </u>	= 1					<mark>f'(0</mark> 1:) x ·	= 0	·X			4	2!	⁰ X ¹	2 = -	-1				F ¹¹ ((3!	<u>ی رو</u>	5 = 1	4 x	,3			
		F(0)	= 1					f'(c	s) =	٥					f"(())= =	-l. -2	2				F'''(0)	= 4 = 4	•3! •10		-		
																	6							: 2	4				
																												-	

Lagrange Multipliers

Recall from Calculus A, a continuous function y = f(x) on a closed and bounded interval $a \le x \le b$:

(i) f(x) must attain its minimum and maximum for some values of x in [a,b]
(ii) the extrema of f(x) can occur at the endpoints (x=a,b) or at critical points (f'(x)=0) in a<x<b.

We say that we are maximizing y = f(x) on the constraint $a \le x \le b$. In higher dimensions, the constraint is no longer an interval.

Lagrange Multipliers

optimize h(x,y) = 7x + 4y + 70

For example, if someone is hiking on a trail their height may vary based on their position (x,y). If we are looking at a topography map (with rings), which has a height function z = h(x,y), then we can find the hikers maximum elevation by maximizing the height by the constraint g(x,y)=0(the hikers path). The critical points are the solution to the following system of equations:

	{	<u>əf</u> əx əf əy g((x, (x, x,y`) = () =	ר - א ל	20 20 20 20	(x,` (x,`	4) 4)																				
Ex	am	<u>ple</u>	<u>s:</u>																									
10	Tr	ne '	hei	gh	to	FH	he	slo	int	ed H	ro	of	of	a '	hou	ise	is	gi	ver	b the	hlx	64) 64	=2	xte th	47	r20). A	
	26			50	SOC		veo		on	 	ne	101		120) /Y	19	un	TTR	105		PO		X	ΓŊ 7	- 9	a

MI	nat	1S	me	mir	nmur	n and	7 YY	NOX	mun	eign	t 01	Tan	neo	\sim	The	S	blae	
			-				-			J			1		Ī	- 1		

$h_x = \lambda g_x$	$(2=2.2\times$	$(1=\lambda x)$	$\int x = \frac{1}{2}$
hy= 2gy	< 4= 2.2 V	Z 2=24	$\begin{cases} y = \frac{2}{2} \end{cases}$
(g(x,y)=0	$\int x^{2} + y^{2} - 4 = 0$	$(x^{2}+y^{2}-4=0)$	$(1/2)^{2} + (2/2)^{2} - 4 = 0$
$\frac{1}{3^2} + \frac{1}{3^2} - 4 = 0$	when $\lambda = \frac{\sqrt{5}}{2}$	when $\lambda = -\sqrt{5}/2$	h(👼 , 🚡)= 4,57 + 20
5 = 4	X= = = 2/151	$\chi = \frac{1}{2} = -\frac{2}{\sqrt{51}}$	$h(-\frac{2}{\sqrt{3}}, \frac{4}{\sqrt{3}}) = -4\sqrt{3} + 20$
$\lambda^2 = \frac{5}{4}$	N= = 4/151	$N = \frac{2}{\lambda} = -\frac{4}{\sqrt{51}}$	
$\lambda = \pm \frac{15}{2}$			
max height = 4.	15 ¹ + 20, minimum	height = -4,51+20	

constraint $x^2 + y^2 - 4 = 0$

lb) W	ha	t if	F H	he	SP	bid	er 2	onl	y C	cra	wł	ed	on	th	١e	up	pe	r Y	nal	fo	f :	the	કક	en	ni Ci	rcl	e	
	Cr	ea.	nn	9	enc	1 po	1111	15 :																					
	on	4	on	e	cri	tic	al ·	poi	nt	ຣເ	INN	ive	S	(21	³ /5	, 4J	⁵¹ /5)											
			1						•				•																
	we	e m	us	F 0	aisc	> †	es	† †	ne	eı	ndi	Poi	nte	5 İ.	e.	w	ner		=0										
	x²	+ y	² _ L	1																									
	x²ł	-(0)	= (1																									
	χ=	= 2	2																										
	hl	2.0)=	16																									
	h(-	-2,0)=	24																									
									1 .								•												
	ma) XX İI	mu	m	hei	gh	+ =	41	5' +	20		mi	nir	nui	m I	nei	gn	†	ما										